Holy influenza, batman!

Typically when we think of flying things and influenza viruses, the first images that come to mind are wild waterfowl. Waterbirds are reservoirs for an enormous diversity of influenza viruses, and are the ultimate origin of all known flu viruses. In birds, the virus replicates in the intestinal tract, and can be spread to other animals (including humans) via fecal material.

However, a new paper expands a chapter on another family of flying animals within the influenza story: bats.

I’ve written previously about the enormous diversity of microbes that bats possess. This shouldn’t be surprising–after all, bats are incredibly diverse themselves, encompassing about a fifth of all known mammalian species. Though rabies is probably the most famous bat-associated virus, other viruses that have been isolated from bats include Nipah and Hendra viruses, SARS coronavirus, Chikungunya virus, Japanese and St. Louis encephalitis viruses, Hantaan virus (a relative of the Sin Nombre hantavirus), and filoviruses, among many others. And of course, a bat->pig->human cross-species infection ended up being a plot line in the recent movie, Contagion (modeled after Nipah virus). However, bats still remain chronically under-studied, despite the fact that they can carry so many potential human pathogens.

This new research expands our knowledge of bat viruses a bit. The authors examined 316 bats from eight locations in Guatemala in 2009-10. Rectal swabs were obtained and screened for influenza virus using molecular methods (looking for influenza virus RNA). Three of the samples tested positive, and all were from little yellow-shouldered bats (Sturnira lilium). This could indicate some clustering and transmission of the virus within bat colonies–and indeed, two of the bats were from the same area in the same year (2009). However, the third bat was captured in 2010 at a location 50 km away from the other two, suggesting that the virus may be more widespread than in just one colony.

When we discuss the epidemiology of influenza viruses, we talk about two genes: the HA gene, which encodes the hemagglutinin protein and allows the virus to bind to host cells; and the NA gene, which encodes the neuraminidase protein and allows the virus to leave an infected cell and spread to others. This is where the “H1N1″ or “H5N1″ nomenclature come from. The novel bat virus was a completely new H type–type 17 (provisional, they note, pending further analyses). The NA gene was also highly divergent, but they are awaiting further analyses to more definitively classify this gene. (Currently there are 9 recognized types of NA genes).

Though they weren’t able to culture out the flu viruses, the authors did do some molecular work suggesting that these novel bat viruses could combine with human viruses and form a functional recombinant virus. What implications could this have for human health? Well, hard to say. We still know very little about all the implications of any distinct type of avian influenza virus, or swine influenza virus, much less something completely foreign like bat flu. It’s interesting that, like birds, influenza virus in bats was found in the intestine (though lung samples were also positive). Can it cause an intestinal infection as well as an upper respiratory infection (the latter being more common in other mammal species)? Does it cause any signs of disease in infected bats at all? If they can get this bat virus to grow, all sorts of interesting lines of research are just waiting.

The article also mentions that seroepidemiological studies are currently being carried out to better understand the epidemiology of bat flu. Looking at PubMed, there is one reference to some similar studies carried out in the early 1980s, but I can’t access anything beyond the title. There also is a report of H3N2 influenza in bats in Kazakhstan, but that article is in Russian and also not readily available. Either way, everything old is new again, and it looks like interest in bat influenza has resurfaced after a 30-year lull. Who knows what else we’ll find lurking out there as interest continues to increase in the wildlife microbiome.

Reference

Suxiang Tong, Yan Li, Pierre Rivailler, Christina Conrardy, Danilo A. Alvarez Castillo, Li-Mei Chen, Sergio Recuenco, James A. Ellison, Charles T. Davis, Ian A. York, Amy S. Turmelle, David Moran, Shannon Rogers, Mang Shi, Ying Tao, Michael R. Weil, Kevin Tang, Lori A. Rowe, Scott Sammons, Xiyan Xu, Michael Frace, Kim A. Lindblade, Nancy J. Cox, Larry J. Anderson, Charles E. Rupprecht, & Ruben O. Donis (2012). A distinct lineage of influenza A virus from bats PNAS Link.

Comments

  1. #1 becca
    February 28, 2012

    How divergent can sequence get and still be the same type for flu? Like, how many nucleotide differences are there between 17 and the next closest H type?

  2. #2 Tara C. Smith
    February 28, 2012

    Not sure what the guidelines are. The HA had only ~50% sequence identity at the amino acid level, and the NA less than that. Don’t know where they usually draw the lines between HA/NA types though.

  3. #3 Mike Olson
    February 28, 2012

    Don’t mean to carp, but I’m glad to see the recent uptake in blog articles. Thanks.

  4. #4 StevoR
    February 29, 2012

    This reminds me of reading The HotZone a gripping novelised treatment of very nasty Marburg and Ebola virus outbreaks – so gripping it made me miss my connecting bus several times* – where a cave in Uganda or was it Rwanda (spelling?) was suggested as the source of Marburg virus infection with very grisly consequences. It was cave – they named it as K-something I think in Mt Elgon maybe(?) ** visited by all sorts of cretaures incl. elephants – and bats. They never identified the exact vector and, far as I know, still haven’t but bats are suspected for that.

    Flying fox bats are certainly known to spread hendra virus here in Australia too.

    Good article – thanks.

    * Yes, I was reading wilst browsing at a bookshop, yes, I eventually bought a copy!

    ** Which I should have somewhere on my bookshelves but, of course, cannot seem to find when I want to. Sigh.

  5. #5 Autismum
    February 29, 2012

    Nothing to add or ask, just wanted to say what an interesting article xx

  6. #6 gsgs
    March 1, 2012
  7. #7 wright1
    March 6, 2012

    Fascinating; thanks, Tara.

    One in five mammalian species is a bat?? Yow. I’m glad folks are looking into that potential vector.