Built on Facts

CARS and other horrible puns

Let’s say you’ve got a water molecule. It doesn’t have to be water, but it helps if it’s one we can easily picture:

i-35527c19880d3ff6bcf07e377cf63463-100px-Water_molecule_3D_svg.png

You can imagine water vapor as an ensemble of many of these molecules flying and bouncing around in their container. This translational motion is not the only kind of motion they’re executing. They’re also rotating, and each impact with another molecule can change the speed and direction of that rotation. Not only are the molecules translating and rotating, they’re also vibrating. The relative positions of the two hydrogen and one oxygen atom are not fixed rigidly, but in practice behave more like they’re connected by little springs and so the vibrate with respect to each other.

Now this is a classical picture, and understood in quantum terms there’s a lot of differences and caveats to be aware of. Nonetheless, the true quantum model corresponds well in its broad outlines to this classical description I’ve outlined.

Now pretend we’ve got a photon of light, which in our picture we can treat as a tiny particle flying through this storm of water molecules crashing around. It runs into a molecule and in the process interacts with these rotations and vibrations – if you think of yourself as jumping on to a fast-moving merry-go-round it’s clear that you’ll gain speed if you land on the side rotating with your direction of motion and lose speed if you land on the side rotating against your direction of motion. Same sort of thing for the photon hitting the rotating molecule. A photon can’t change speed though, so its energy change is expressed in terms of a changing frequency. Quantum mechanically, it’s scattering off the rotational and vibrational states. A photon that loses energy is said to have undergone Stokes scattering; one that gains energy has undergone anti-Stokes scattering. These both fall under the general heading of Raman scattering.

These processes are fairly weak, generally only a tiny fraction of photons encountering an atom undergo one of these interactions. This is a difficulty for those scientists studying this behavior and it’s also a problem for the considerable and growing commercial applications of this scattering. One way around this is to use the properties of coherent light so that each scattering event emits light in phase, in the manner of a laser. It’s a third-order process requiring three separate lasers to produce the shifted light called CARS in the schematic quantum diagram below:

i-ea2d3e23cb0bf28399a7f2ee106e44e6-250px-CARS_diagram.png

Why is it called CARS? Coherent Anti-Stokes Raman Spectroscopy. In a cute twist, the effect was first discovered in 1965 by physicists at Ford Motor Company. Yes, the auto manufacturer used to have a fundamental physics research division. To their credit, they weren’t the ones who named it. That came years later via other researchers.

We’re still discovering all sorts of interesting variations of this phenomenon. One of them is applying femtosecond laser pulses to produce the effect. This short-time-scale method was inevetably named “fast CARS”. It’s also possible to use femtosecond pulses to apply a combined technique that can simultaneously resolve the time and frequency behavior of CARS light. The name for this is “hybrid CARS”.

The possibilities practically write themselves. I have gently made fun of the ridiculous names in high-energy physics before, but I have to say I like the CARS puns. Me, I’m just hoping for a use in atmospheric science so we’ll have an excuse to put it in a plane and call it “flying CARS”.

Comments

  1. #1 Eric Lund
    September 16, 2009

    I’m in the scientific satellite business, where it seems that coming up with a clever acronym seems to be an important part of the business. Naturally we see lots of horrible puns. My nominee in that category would be a solar physics mission, launched about three years ago, which consists of two identical spacecraft orbiting the sun near Earth’s orbit, one leading and the other lagging Earth. The satellites are equipped with imagers, and the different lines of sight allow a 3-D view of the sun, like with a stereoscope (you may not have seen one, but your parents probably have). The mission’s name: Solar Terrestrial Relations Observatory, or STEREO. An early mission logo idea (since discarded) was a cartoon of the sun wearing headphones.

  2. #2 Nathan Myers
    September 16, 2009

    I am very fond of scientific satellites, because the data collected will live on long after the theory that motivated the launch has been long discarded. This fondness excepts certain probes that collect an extremely limited sort of data meaningful only behind the blinders of one theory, and which seem somehow always much more expensive than those with many different instruments collecting data that no theory could have predicted.

    If I understand right, that STEREO mission was astonishingly productive.

  3. #3 michale
    September 17, 2009

    Running your car 100% on water can be complex, but if you convert your car into a water hybrid it is actually quite simple. The idea of converting your car to run on water might sound complex but it doesn’t have to be difficult.The HHO electrolyser uses an electrolysis process to convert water into oxygen gas which is added to the internal combustion engine.[url=http://water-for-gas-reviews.com/Water4Gas.html]water fueled cars[/url]

  4. #4 Chris' Wills
    September 17, 2009

    Why did Ford have a fundamental physics research division?

    Not complaining, just wondering.

  5. #5 rob
    September 17, 2009

    The HHO electrolyser process sounds stoopid. you take energy to separate the O from the H in water and then add the O to the combution in the engine. um, there is oxygen in the atmoshere that takes no energy to utilize in an internal combustion engine.

    why electolyze the water when you get the oxygen for free?

  6. #6 Nick
    September 21, 2009

    I wrote my dissertation on a CARS-like coherent spectroscopic technique called DOVE (DOubly Vibrationally Enhanced) four-wave mixing spectroscopy. Sadly, I never got to develop any suitably punny variations on it.

    The NMR community is riven with terrible jokes in the names for their various pulse sequences.