A Blog Around The Clock

New and Exciting in PLoS journals

There is a lot of new stuff published this week in PLoS Biology, PLoS Medicine, PLoS Neglected Tropical Diseases and PLoS ONE.

Molecular Studies in Treponema pallidum Evolution: Toward Clarity? is an Expert Commentary on last week’s (widely reported) study On the Origin of the Treponematoses: A Phylogenetic Approach (the paper that suggests that Columbus brought syphilis from the New World back to Europe).

Looking at the 33 new articles on PLoS ONE, here are a few titles I found intriguing:

Seasonal Changes in Mood and Behavior Are Linked to Metabolic Syndrome:

Obesity is a major public health problem worldwide. Metabolic syndrome is a risk factor to the cardiovascular diseases. It has been reported that disruptions of the circadian clockwork are associated with and may predispose to metabolic syndrome. 8028 individuals attended a nationwide health examination survey in Finland. Data were collected with a face-to-face interview at home and during an individual health status examination. The waist circumference, height, weight and blood pressure were measured and samples were taken for laboratory tests. Participants were assessed using the ATP-III criteria for metabolic syndrome and with the Seasonal Pattern Assessment Questionnaire for their seasonal changes in mood and behavior. Seasonal changes in weight in particular were a risk factor of metabolic syndrome, after controlling for a number of known risk and potential confounding factors. Metabolic syndrome is associated with high global scores on the seasonal changes in mood and behavior, and with those in weight in particular. Assessment of these changes may serve as a useful indicator of metabolic syndrome, because of easy assessment. Abnormalities in the circadian clockwork which links seasonal fluctuations to metabolic cycles may predispose to seasonal changes in weight and to metabolic syndrome.

Natural Selection and Adaptive Evolution of Leptin in the Ochotona Family Driven by the Cold Environmental Stress:

Environmental stress can accelerate the evolutionary rate of specific stress-response proteins and create new functions specialized for different environments, enhancing an organism’s fitness to stressful environments. Pikas (order Lagomorpha), endemic, non-hibernating mammals in the modern Holarctic Region, live in cold regions at either high altitudes or high latitudes and have a maximum distribution of species diversification confined to the Qinghai-Tibet Plateau. Variations in energy metabolism are remarkable for them living in cold environments. Leptin, an adipocyte-derived hormone, plays important roles in energy homeostasis. To examine the extent of leptin variations within the Ochotona family, we cloned the entire coding sequence of pika leptin from 6 species in two regions (Qinghai-Tibet Plateau and Inner Mongolia steppe in China) and the leptin sequences of plateau pikas (O. curzonia) from different altitudes on Qinghai-Tibet Plateau. We carried out both DNA and amino acid sequence analyses in molecular evolution and compared modeled spatial structures. Our results show that positive selection (PS) acts on pika leptin, while nine PS sites located within the functionally significant segment 85-119 of leptin and one unique motif appeared only in pika lineages-the ATP synthase α and β subunit signature site. To reveal the environmental factors affecting sequence evolution of pika leptin, relative rate test was performed in pikas from different altitudes. Stepwise multiple regression shows that temperature is significantly and negatively correlated with the rates of non-synonymous substitution (Ka) and amino acid substitution (Aa), whereas altitude does not significantly affect synonymous substitution (Ks), Ka and Aa. Our findings support the viewpoint that adaptive evolution may occur in pika leptin, which may play important roles in pikas’ ecological adaptation to extreme environmental stress. We speculate that cold, and probably not hypoxia, may be the primary environmental factor for driving adaptive evolution of pika leptin.

Mammalian Cells Change Volume during Mitosis:

Using single cell-imaging methods we have found that the volume of adherent cells grown in culture decreases as the cells rounds when it enters mitosis. A minimal volume is reached at metaphase. Rapid volume recovery initiates before abscission as cells make the transition from metaphase to cytokinesis. These volume changes are simultaneous with the rapid surface area decrease and recovery observed in mitotic cells.

A Technique for Characterizing the Development of Rhythms in Bird Song:

The developmental trajectory of nervous system dynamics shows hierarchical structure on time scales spanning ten orders of magnitude from milliseconds to years. Analyzing and characterizing this structure poses significant signal processing challenges. In the context of birdsong development, we have previously proposed that an effective way to do this is to use the dynamic spectrum or spectrogram, a classical signal processing tool, computed at multiple time scales in a nested fashion. Temporal structure on the millisecond timescale is normally captured using a short time Fourier analysis, and structure on the second timescale using song spectrograms. Here we use the dynamic spectrum on time series of song features to study the development of rhythm in juvenile zebra finch. The method is able to detect rhythmic structure in juvenile song in contrast to previous characterizations of such song as unstructured. We show that the method can be used to examine song development, the accuracy with which rhythm is imitated, and the variability of rhythms across different renditions of a song. We hope that this technique will provide a standard, automated method for measuring and characterizing song rhythm.

The Epidemics of Donations: Logistic Growth and Power-Laws:

This paper demonstrates that collective social dynamics resulting from individual donations can be well described by an epidemic model. It captures the herding behavior in donations as a non-local interaction between individual via a time-dependent mean field representing the mass media. Our study is based on the statistical analysis of a unique dataset obtained before and after the tsunami disaster of 2004. We find a power-law behavior for the distributions of donations with similar exponents for different countries. Even more remarkably, we show that these exponents are the same before and after the tsunami, which accounts for some kind of universal behavior in donations independent of the actual event. We further show that the time-dependent change of both the number and the total amount of donations after the tsunami follows a logistic growth equation. As a new element, a time-dependent scaling factor appears in this equation which accounts for the growing lack of public interest after the disaster. The results of the model are underpinned by the data analysis and thus also allow for a quantification of the media influence.

Deconstructing Insight: EEG Correlates of Insightful Problem Solving:

Cognitive insight phenomenon lies at the core of numerous discoveries. Behavioral research indicates four salient features of insightful problem solving: (i) mental impasse, followed by (ii) restructuring of the problem representation, which leads to (iii) a deeper understanding of the problem, and finally culminates in (iv) an “Aha!” feeling of suddenness and obviousness of the solution. However, until now no efforts have been made to investigate the neural mechanisms of these constituent features of insight in a unified framework. In an electroencephalographic study using verbal remote associate problems, we identified neural correlates of these four features of insightful problem solving. Hints were provided for unsolved problems or after mental impasse. Subjective ratings of the restructuring process and the feeling of suddenness were obtained on trial-by-trial basis. A negative correlation was found between these two ratings indicating that sudden insightful solutions, where restructuring is a key feature, involve automatic, subconscious recombination of information. Electroencephalogram signals were analyzed in the space×time×frequency domain with a nonparametric cluster randomization test. First, we found strong gamma band responses at parieto-occipital regions which we interpreted as (i) an adjustment of selective attention (leading to a mental impasse or to a correct solution depending on the gamma band power level) and (ii) encoding and retrieval processes for the emergence of spontaneous new solutions. Secondly, we observed an increased upper alpha band response in right temporal regions (suggesting active suppression of weakly activated solution relevant information) for initially unsuccessful trials that after hint presentation led to a correct solution. Finally, for trials with high restructuring, decreased alpha power (suggesting greater cortical excitation) was observed in right prefrontal area. Our results provide a first account of cognitive insight by dissociating its constituent components and potential neural correlates.

The Sorcerer II Global Ocean Sampling Expedition: Metagenomic Characterization of Viruses within Aquatic Microbial Samples:

Viruses are the most abundant biological entities on our planet. Interactions between viruses and their hosts impact several important biological processes in the world’s oceans such as horizontal gene transfer, microbial diversity and biogeochemical cycling. Interrogation of microbial metagenomic sequence data collected as part of the Sorcerer II Global Ocean Expedition (GOS) revealed a high abundance of viral sequences, representing approximately 3% of the total predicted proteins. Cluster analyses of the viral sequences revealed hundreds to thousands of viral genes encoding various metabolic and cellular functions. Quantitative analyses of viral genes of host origin performed on the viral fraction of aquatic samples confirmed the viral nature of these sequences and suggested that significant portions of aquatic viral communities behave as reservoirs of such genetic material. Distributional and phylogenetic analyses of these host-derived viral sequences also suggested that viral acquisition of environmentally relevant genes of host origin is a more abundant and widespread phenomenon than previously appreciated. The predominant viral sequences identified within microbial fractions originated from tailed bacteriophages and exhibited varying global distributions according to viral family. Recruitment of GOS viral sequence fragments against 27 complete aquatic viral genomes revealed that only one reference bacteriophage genome was highly abundant and was closely related, but not identical, to the cyanomyovirus P-SSM4. The co-distribution across all sampling sites of P-SSM4-like sequences with the dominant ecotype of its host, Prochlorococcus supports the classification of the viral sequences as P-SSM4-like and suggests that this virus may influence the abundance, distribution and diversity of one of the most dominant components of picophytoplankton in oligotrophic oceans. In summary, the abundance and broad geographical distribution of viral sequences within microbial fractions, the prevalence of genes among viral sequences that encode microbial physiological function and their distinct phylogenetic distribution lend strong support to the notion that viral-mediated gene acquisition is a common and ongoing mechanism for generating microbial diversity in the marine environment.

What Happens in Between? Human Oscillatory Brain Activity Related to Crossmodal Spatial Cueing:

Previous studies investigated the effects of crossmodal spatial attention by comparing the responses to validly versus invalidly cued target stimuli. Dynamics of cortical rhythms in the time interval between cue and target might contribute to cue effects on performance. Here, we studied the influence of spatial attention on ongoing oscillatory brain activity in the interval between cue and target onset. In a first experiment, subjects underwent periods of tactile stimulation (cue) followed by visual stimulation (target) in a spatial cueing task as well as tactile stimulation as a control. In a second experiment, cue validity was modified to be 50%, 75%, or else 25%, to separate effects of exogenous shifts of attention caused by tactile stimuli from that of endogenous shifts. Tactile stimuli produced: 1) a stronger lateralization of the sensorimotor beta-rhythm rebound (15-22 Hz) after tactile stimuli serving as cues versus not serving as cues; 2) a suppression of the occipital alpha-rhythm (7-13 Hz) appearing only in the cueing task (this suppression was stronger contralateral to the endogenously attended side and was predictive of behavioral success); 3) an increase of prefrontal gamma-activity (25-35 Hz) specifically in the cueing task. We measured cue-related modulations of cortical rhythms which may accompany crossmodal spatial attention, expectation or decision, and therefore contribute to cue validity effects. The clearly lateralized alpha suppression after tactile cues in our data indicates its dependence on endogenous rather than exogenous shifts of visuo-spatial attention following a cue independent of its modality.