A Blog Around The Clock

New and Exciting in PLoS ONE

There are 48 new articles published in PLoS ONE this week. Rate, comment, send trackbacks….

The Phylogeny of the Four Pan-American MtDNA Haplogroups: Implications for Evolutionary and Disease Studies:

Only a limited number of complete mitochondrial genome sequences belonging to Native American haplogroups were available until recently, which left America as the continent with the least amount of information about sequence variation of entire mitochondrial DNAs. In this study, a comprehensive overview of all available complete mitochondrial DNA (mtDNA) genomes of the four pan-American haplogroups A2, B2, C1, and D1 is provided by revising the information scattered throughout GenBank and the literature, and adding 14 novel mtDNA sequences. The phylogenies of haplogroups A2, B2, C1, and D1 reveal a large number of sub-haplogroups but suggest that the ancestral Beringian population(s) contributed only six (successful) founder haplotypes to these haplogroups. The derived clades are overall starlike with coalescence times ranging from 18,000 to 21,000 years (with one exception) using the conventional calibration. The average of about 19,000 years somewhat contrasts with the corresponding lower age of about 13,500 years that was recently proposed by employing a different calibration and estimation approach. Our estimate indicates a human entry and spread of the pan-American haplogroups into the Americas right after the peak of the Last Glacial Maximum and comfortably agrees with the undisputed ages of the earliest Paleoindians in South America. In addition, the phylogenetic approach also indicates that the pathogenic status proposed for various mtDNA mutations, which actually define branches of Native American haplogroups, was based on insufficient grounds.

Laterality and Flight: Concurrent Tests of Side-Bias and Optimality in Flying Tree Swallows:

Behavioural side-bias occurs in many vertebrates, including birds as a result of hemispheric specialization and can be advantageous by improving response times to sudden stimuli and efficiency in multi-tasking. However, behavioural side-bias can lead to morphological asymmetries resulting in reduced performance for specific activities. For flying animals, wing asymmetry is particularly costly and it is unclear if behavioural side-biases will be expressed in flight; the benefits of quick response time afforded by side-biases must be balanced against the costs of less efficient flight due to the morphological asymmetry side-biases may incur. Thus, competing constraints could lead to context-dependent expression or suppression of side-bias in flight. In repeated flight trials through an outdoor tunnel with obstacles, tree swallows (Tachycineta bicolor) preferred larger openings, but we did not detect either individual or population-level side-biases. Thus, while observed behavioural side-biases during substrate-foraging and copulation are common in birds, we did not see such side-bias expressed in obstacle avoidance behaviour in flight. This finding highlights the importance of behavioural context for investigations of side-bias and hemispheric laterality and suggests both proximate and ultimate trade-offs between species-specific cognitive ecology and flight biomechanics.

Molecular Mapping of Movement-Associated Areas in the Avian Brain: A Motor Theory for Vocal Learning Origin:

Vocal learning is a critical behavioral substrate for spoken human language. It is a rare trait found in three distantly related groups of birds-songbirds, hummingbirds, and parrots. These avian groups have remarkably similar systems of cerebral vocal nuclei for the control of learned vocalizations that are not found in their more closely related vocal non-learning relatives. These findings led to the hypothesis that brain pathways for vocal learning in different groups evolved independently from a common ancestor but under pre-existing constraints. Here, we suggest one constraint, a pre-existing system for movement control. Using behavioral molecular mapping, we discovered that in songbirds, parrots, and hummingbirds, all cerebral vocal learning nuclei are adjacent to discrete brain areas active during limb and body movements. Similar to the relationships between vocal nuclei activation and singing, activation in the adjacent areas correlated with the amount of movement performed and was independent of auditory and visual input. These same movement-associated brain areas were also present in female songbirds that do not learn vocalizations and have atrophied cerebral vocal nuclei, and in ring doves that are vocal non-learners and do not have cerebral vocal nuclei. A compilation of previous neural tracing experiments in songbirds suggests that the movement-associated areas are connected in a network that is in parallel with the adjacent vocal learning system. This study is the first global mapping that we are aware for movement-associated areas of the avian cerebrum and it indicates that brain systems that control vocal learning in distantly related birds are directly adjacent to brain systems involved in movement control. Based upon these findings, we propose a motor theory for the origin of vocal learning, this being that the brain areas specialized for vocal learning in vocal learners evolved as a specialization of a pre-existing motor pathway that controls movement.

Ovulation Order Mediates a Trade-Off between Pre-Hatching and Post-Hatching Viability in an Altricial Bird:

Simultaneously dependent siblings often compete for parentally provided resources. This competition may lead to mortality, the probability of which may be a function, in part, of the individual offspring’s production order. In birds, serial ovulation followed by hatching asynchrony of simultaneous dependents leads to differences in post-hatching survival that largely depend on ovulation (laying) order. This has led to the widespread assumption that early-laid eggs are of greater value and therefore should possess different maternally manipulated characteristics than later-laid eggs. However, this perspective ignores the potential effect of laying order on pre-hatching viability, an effect which some studies suggest should offset the effect of laying order on post-hatching viability. I examined the relationship between laying order and hatching and fledging probability in wild, free-living Lincoln’s sparrows (Melospiza lincolnii). In broods with complete hatching success, first-laid and therefore first-hatched offspring had the highest probability of fledging, and fledging probability declined with increasing laying order. However, first-laid eggs were less likely than later-laid eggs to hatch. This effect of laying order on pre-hatching viability seemed to offset that on post-hatching viability, and, consistently, maternal investment in egg size varied little if at all with respect to laying order. These results suggest that ovulation order mediates a trade-off between pre-hatching and post-hatching viability and should encourage a re-evaluation of the solitary role post-embryonic survival often plays when researchers make assumptions about the value of propagules based on the order in which they are produced.