New and Exciting in PLoS ONE

60 new articles just got published in PLoS ONE a few minutes ago. Here are some of the greatest hits (IMHO):

i-8c1278491f422963daf8a3a2718e19e5-LOL-Federer.jpg
Enhanced Temporal but Not Attentional Processing in Expert Tennis Players:

In tennis, as in many disciplines of sport, fine spatio-temporal resolution is required to reach optimal performance. While many studies on tennis have focused on anticipatory skills or decision making, fewer have investigated the underlying visual perception abilities. In this study, we used a battery of seven visual tests that allowed us to assess which kind of visual information processing is performed better by tennis players than other athletes (triathletes) and non-athletes. We found that certain time-related skills, such as speed discrimination, are superior in tennis players compared to non-athletes and triathletes. Such tasks might be used to improve tennis performance in the future.

Effects of Experimental Brood Size Manipulation and Gender on Carotenoid Levels of Eurasian Kestrels Falco tinnunculus:

Animals use carotenoid-pigments for coloration, as antioxidants and as enhancers of the immune system. Carotenoid-dependent colours can thus signal individual quality and carotenoids have also been suggested to mediate life-history trade-offs. To examine trade-offs in carotenoid allocation between parents and the young, or between skin coloration and plasma of the parents at different levels of brood demand, we manipulated brood sizes of Eurasian kestrels (Falco tinnunculus). Brood size manipulation had no overall effect on plasma carotenoid levels or skin hue of parents, but female parents had twice the plasma carotenoid levels of males. Males work physically harder than females and they might thus also use more carotenoids against oxidative stress than females. Alternatively, females could be gaining back the carotenoid stores they depleted during egg-laying by eating primarily carotenoid-rich food items during the early nestling stage. Fledglings in enlarged broods had higher plasma carotenoid concentrations than those in reduced broods. This difference was not explained by diet. In light of recent evidence from other species, we suggest it might instead be due to fledglings in enlarged broods having higher testosterone levels, which in turn increased plasma carotenoid levels. The partial cross-foster design of our experiment revealed evidence for origin effects (genetic or maternal) on carotenoid levels of fledglings, but no origin-environment interaction. These results from wild birds differ from studies in captivity, and thus offer new insights into carotenoid physiology in relation to division of parental care and demands of the brood.

Tune Deafness: Processing Melodic Errors Outside of Conscious Awareness as Reflected by Components of the Auditory ERP:

Tune deafness (TD) is a central auditory processing disorder characterized by the inability to discriminate pitch, reproduce melodies or to recognize deviations in melodic structure, in spite of normal hearing. The cause of the disorder is unknown. To identify a pathophysiological marker, we ascertained a group of severely affected TD patients using the Distorted Tunes Test, an ecologically valid task with a longstanding history, and used electrophysiological methods to characterize the brain's responses to correct and incorrect melodic sequences. As expected, we identified a neural correlate of patients' unawareness of melodic distortions: deviant notes modulated long-latency auditory evoked potentials and elicited a mismatch negativity in controls but not in affected subjects. However a robust P300 was elicited by deviant notes, suggesting that, as in blindsight, TD subjects process stimuli that they cannot consciously perceive. Given the high heritability of TD, these patients may make it possible to use genetic methods to study cellular and molecular mechanisms underlying conscious awareness.

Pattern of the Divergence of Olfactory Receptor Genes during Tetrapod Evolution:

The olfactory receptor (OR) multigene family is responsible for the sense of smell in vertebrate species. OR genes are scattered widely in our chromosomes and constitute one of the largest gene families in eutherian genomes. Some previous studies revealed that eutherian OR genes diverged mainly during early mammalian evolution. However, the exact period when, and the ecological reason why eutherian ORs strongly diverged has remained unclear. In this study, I performed a strict data mining effort for marsupial opossum OR sequences and bootstrap analyses to estimate the periods of chromosomal migrations and gene duplications of OR genes during tetrapod evolution. The results indicate that chromosomal migrations occurred mainly during early vertebrate evolution before the monotreme-placental split, and that gene duplications occurred mainly during early mammalian evolution between the bird-mammal split and marsupial-placental split, coinciding with the reduction of opsin genes in primitive mammals. It could be thought that the previous chromosomal dispersal allowed the OR genes to subsequently expand easily, and the nocturnal adaptation of early mammals might have triggered the OR gene expansion.

i-3ca1cd50ed354a90ae20e05373c22ff1-LOL baby.jpgYoung Infants' Neural Processing of Objects Is Affected by Eye Gaze Direction and Emotional Expression:

Eye gaze is an important social cue which is used to determine another person's focus of attention and intention to communicate. In combination with a fearful facial expression eye gaze can also signal threat in the environment. The ability to detect and understand others' social signals is essential in order to avoid danger and enable social evaluation. It has been a matter of debate when infants are able to use gaze cues and emotional facial expressions in reference to external objects. Here we demonstrate that by 3 months of age the infant brain differentially responds to objects as a function of how other people are reacting to them. Using event-related electrical brain potentials (ERPs), we show that an indicator of infants' attention is enhanced by an adult's expression of fear toward an unfamiliar object. The infant brain showed an increased Negative central (Nc) component toward objects that had been previously cued by an adult's eye gaze and frightened facial expression. Our results further suggest that infants' sensitivity cannot be due to a general arousal elicited by a frightened face with eye gaze directed at an object. The neural attention system of 3 month old infants is sensitive to an adult's eye gaze direction in combination with a fearful expression. This early capacity may lay the foundation for the development of more sophisticated social skills such as social referencing, language, and theory of mind.

Meta-Analysis of the Effects of Predation on Animal Prey Abundance: Evidence from UK Vertebrates:

Controlling vertebrate predators is one of the most widespread forms of wildlife management and it continues to cause conflict between stakeholders worldwide. It is important for managers and policy-makers to make decisions on this issue that are based on the best available scientific evidence. Therefore, it is first important to understand if there is indeed an impact of vertebrate predators on prey, and then to quantify this impact. Using the UK as a case study, we use a meta-analytical approach to review the available evidence to assess the effect of vertebrate predation on animal prey abundance. We find a significant effect of predators on prey abundance across our studies. On average, there is a 1.6 fold increase in prey abundance in the absence of predation. However, we show significant heterogeneity in effect sizes, and discuss how the method of predator control, whether the predator is native or non-native, and aspects of study design, may be potential causes. Our results allow some cautious policy recommendations to be made regarding the management of predator and prey populations. Meta-analysis is an important tool for understanding general patterns in the effect of predators on prey abundance across studies. Such an approach is especially valuable where management decisions need to be made in the absence of site-specific information.

An Analysis of News Media Coverage of Complementary and Alternative Medicine:

To examine the accuracy and adequacy of lay media news stories about complementary and alternative medicines and therapies. A descriptive analysis of news stories about complementary and alternative medicine (CAM) in the Australian media using a national medical news monitoring website, mediadoctor.org.au. Each story was rated against 10 criteria by two individuals. Consensus scores of 222 news articles reporting therapeutic claims about complementary medicines posted on mediadoctor.org.au between 1 January 2004 and 1 September 2007 were calculated. The overall rating score for 222 CAM articles was 50% (95% CI 47% to 53%). There was a statistically significant (F = 3.68, p = 0.006) difference in cumulative mean scores according to type of therapy: biologically based practices (54%, 95% CI 50% to 58%); manipulative body based practices (46%, 95% CI 39% to 54%), whole medical systems (45%, 95% CI 32% to 58%), mind body medicine (41%, 95% CI 31% to 50%) and energy medicine (33%, 95% CI 11% to 55%). There was a statistically significant difference in cumulative mean scores (F = 3.72, p = 0.0001) according to the clinical outcome of interest with stories about cancer treatments (62%, 95% CI 54% to 70%) scoring highest and stories about treatments for children's behavioural and mental health concerns scoring lowest (31%, 95% CI 19% to 43%). Significant differences were also found in scores between media outlets. There is substantial variability in news reporting practices about CAM. Overall, although they may be improving, the scores remain generally low. It appears that much of the information the public receives about CAM is inaccurate or incomplete.

Inducible Ablation of Melanopsin-Expressing Retinal Ganglion Cells Reveals Their Central Role in Non-Image Forming Visual Responses:

Rod/cone photoreceptors of the outer retina and the melanopsin-expressing retinal ganglion cells (mRGCs) of the inner retina mediate non-image forming visual responses including entrainment of the circadian clock to the ambient light, the pupillary light reflex (PLR), and light modulation of activity. Targeted deletion of the melanopsin gene attenuates these adaptive responses with no apparent change in the development and morphology of the mRGCs. Comprehensive identification of mRGCs and knowledge of their specific roles in image-forming and non-image forming photoresponses are currently lacking. We used a Cre-dependent GFP expression strategy in mice to genetically label the mRGCs. This revealed that only a subset of mRGCs express enough immunocytochemically detectable levels of melanopsin. We also used a Cre-inducible diphtheria toxin receptor (iDTR) expression approach to express the DTR in mRGCs. mRGCs develop normally, but can be acutely ablated upon diphtheria toxin administration. The mRGC-ablated mice exhibited normal outer retinal function. However, they completely lacked non-image forming visual responses such as circadian photoentrainment, light modulation of activity, and PLR. These results point to the mRGCs as the site of functional integration of the rod/cone and melanopsin phototransduction pathways and as the primary anatomical site for the divergence of image-forming and non-image forming photoresponses in mammals.

i-140b43efa85efd5f7a33a21dc6d9acb4-LOl capuchin.jpgPreference Transitivity and Symbolic Representation in Capuchin Monkeys (Cebus apella):

Can non-human animals comprehend and employ symbols? The most convincing empirical evidence comes from language-trained apes, but little is known about this ability in monkeys. Tokens can be regarded as symbols since they are inherently non-valuable objects that acquire an arbitrarily assigned value upon exchange with an experimenter. Recent evidence suggested that capuchin monkeys, which diverged from the human lineage 35 million years ago, can estimate, represent and combine token quantities. A fundamental and open question is whether monkeys can reason about symbols in ways similar to how they reason about real objects. Here we examined this broad question in the context of economic choice behavior. Specifically, we assessed whether, in a symbolic context, capuchins' preferences satisfy transitivity - a fundamental trait of rational decision-making. Given three options A, B and C, transitivity holds true if Aâ¥B, Bâ¥C and Aâ¥C (where ⥠indicates preference). In this study, we trained monkeys to exchange three types of tokens for three different foods. We then compared choices monkeys made between different types of tokens with choices monkeys made between the foods. Qualitatively, capuchins' preferences revealed by the way of tokens were similar to those measured with the actual foods. In particular, when choosing between tokens, monkeys displayed strict economic preferences and their choices satisfied transitivity. Quantitatively, however, values measured by the way of tokens differed systematically from those measured with the actual foods. In particular, for any pair of foods, the relative value of the preferred food increased when monkeys chose between the corresponding tokens. These results indicate that indeed capuchins are capable of treating tokens as symbols. However, as they do so, capuchins experience the cognitive burdens imposed by symbolic representation.

Disturbance of Social Hierarchy by an Invasive Species: A Gene Transcription Study:

Ecological and evolutionary changes in native populations facing invasion by exotic species are increasingly reported. Recently, it has been shown that competition with exotic rainbow trout (Oncorhynchus mykiss) disrupts dominance hierarchies within groups of native Atlantic salmon (Salmo salar). The genetic and molecular actors underlying phenotypic plasticity are poorly understood. Here, we aimed at identifying the genetic and molecular actors contributing to this plastic loss of dominance hierarchies as well as at identifying genes implicated in behaviours related to social dominance. By using microarrays, we compared the genome-wide gene transcription profiles in brains of dominant versus subordinate juvenile Atlantic salmon in presence or absence of a competitive rainbow trout. Adding the trout competitor resulted in dominant and subordinate salmon being more similar, both behaviourally and at the level of brain gene transcription patterns. Genes for which transcription levels differed between dominant and subordinate salmon in the absence of exotic trout were mainly over-expressed in dominant salmon and included genes implicated in protein turnover, neuronal structural change and oxygen transport. Our study provides one of the few examples demonstrating a close interplay between behavioural plasticity and gene transcription, therefore contributing to the understanding of the molecular mechanisms underlying these processes in an ecologically relevant context.

Categories

More like this