A Blog Around The Clock

New and Exciting in PLoS this week

So, let’s see what’s new in PLoS Genetics, PLoS Computational Biology, PLoS Pathogens, PLoS ONE and PLoS Neglected Tropical Diseases this week. As always, you should rate the articles, post notes and comments and send trackbacks when you blog about the papers. Here are my own picks for the week – you go and look for your own favourites:

Birdsong ‘Transcriptomics’: Neurochemical Specializations of the Oscine Song System:

Vocal learning is a rare and complex behavioral trait that serves as a basis for the acquisition of human spoken language. In songbirds, vocal learning and production depend on a set of specialized brain nuclei known as the song system. Using high-throughput functional genomics we have identified ~200 novel molecular markers of adult zebra finch HVC, a key node of the song system. These markers clearly differentiate HVC from the general pallial region to which HVC belongs, and thus represent molecular specializations of this song nucleus. Bioinformatics analysis reveals that several major neuronal cell functions and specific biochemical pathways are the targets of transcriptional regulation in HVC, including: 1) cell-cell and cell-substrate interactions (e.g., cadherin/catenin-mediated adherens junctions, collagen-mediated focal adhesions, and semaphorin-neuropilin/plexin axon guidance pathways); 2) cell excitability (e.g., potassium channel subfamilies, cholinergic and serotonergic receptors, neuropeptides and neuropeptide receptors); 3) signal transduction (e.g., calcium regulatory proteins, regulators of G-protein-related signaling); 4) cell proliferation/death, migration and differentiation (e.g., TGF-beta/BMP and p53 pathways); and 5) regulation of gene expression (candidate retinoid and steroid targets, modulators of chromatin/nucleolar organization). The overall direction of regulation suggest that processes related to cell stability are enhanced, whereas proliferation, growth and plasticity are largely suppressed in adult HVC, consistent with the observation that song in this songbird species is mostly stable in adulthood. Our study represents one of the most comprehensive molecular genetic characterizations of a brain nucleus involved in a complex learned behavior in a vertebrate. The data indicate numerous targets for pharmacological and genetic manipulations of the song system, and provide novel insights into mechanisms that might play a role in the regulation of song behavior and/or vocal learning.

Effects of Bothrops asper Snake Venom on Lymphatic Vessels: Insights into a Hidden Aspect of Envenomation:

Envenomations by snakes of the family Viperidae (pit vipers) induce severe pathological alterations at the site of venom injection, such as edema, necrosis, hemorrhage, and blistering, which may lead to permanent tissue damage and disability. Edema is a prominent and common manifestation in these envenomations. The effect of viperid snake venoms in lymphatic vessels has not been previously investigated. This study analyzed the effect of the venom of Bothrops asper, the most important venomous snake in Central America, on the collecting lymphatic vessels of the mouse mesentery. The venom induced a rapid reduction in the lumen of these lymphatics, associated with a halting in the flow of lymph. These effects were reproduced by a myotoxic phospholipase A2 homologue isolated from this venom, but not by a hemorrhagic metalloproteinase nor by a coagulant serine proteinase. B. asper venom, and the purified myotoxin, were cytotoxic for smooth muscle cells in culture, thus suggesting that the alterations observed in lymphatics are due to the effect on smooth muscle cells of the lymphatic vessel wall. These results demonstrate a direct effect of B. asper venom on lymphatics, which is likely to contribute to the prominent edema characteristic of these envenomations.

‘It Is Me Who Endures but My Family That Suffers’: Social Isolation as a Consequence of the Household Cost Burden of Buruli Ulcer Free of Charge Hospital Treatment:

The cost burden of free of charge Buruli ulcer disease (Bu) hospital treatment is not sustainable for a majority of patients and their families in Central Cameroon. The long term nature of Bu taxes the patients’ and their families’ resources often to a breaking point, consequently often leading to the abandonment of patients by the family. In the study area, 62% of families ceased providing social and financial support to the patient, which resulted in the patient’s isolation at the hospital. Significantly, social isolation was cited by in-patients as the principal cause for abandonment of biomedical treatment. Paradoxically, this phenomenon was observed in settings where hospital in-patient treatment, room and board were provided free of charge for the patient and caretaker. These findings show that despite the significant reduction in costs for medical care, in its current form, hospital treatment for Buruli ulcer often remains financially and socially unsustainable for patients and their households, leading to the abandonment of biomedical treatment or altogether avoiding it. Further investment and research are urgently needed to evaluate new intervention strategies that are both socially and financially acceptable and appropriate in local settings.

Long Lasting Persistence of Bacillus thuringiensis Subsp. israelensis (Bti) in Mosquito Natural Habitats:

The detrimental effects of chemical insecticides on the environment and human health have lead to the call for biological alternatives. Today, one of the most promising solutions is the use of spray formulations based on Bacillus thuringiensis subsp. israelensis (Bti) in insect control programs. As a result, the amounts of Bti spread in the environment are expected to increase worldwide, whilst the common belief that commercial Bti is easily cleared from the ecosystem has not yet been clearly established. In this study, we aimed to determine the nature and origin of the high toxicity toward mosquito larvae found in decaying leaf litter collected in several natural mosquito breeding sites in the Rhône-Alpes region. From the toxic fraction of the leaf litter, we isolated B. cereus-like bacteria that were further characterized as B. thuringiensis subsp. israelensis using PCR amplification of specific toxin genes. Immunological analysis of these Bti strains showed that they belong to the H14 group. We finally used amplified length polymorphism (AFLP) markers to show that the strains isolated from the leaf litter were closely related to those present in the commercial insecticide used for field application, and differed from natural worldwide genotypes. Our results raise the issue of the persistence, potential proliferation and environmental accumulation of human-spread Bti in natural mosquito habitats. Such Bti environmental persistence may lengthen the exposure time of insects to this bio-insecticide, thereby increasing the risk of resistance acquisition in target insects, and of a negative impact on non-target insects.