A Blog Around The Clock

New and Exciting in PLoS ONE

There are 33 new articles in PLoS ONE today. As always, you should rate the articles, post notes and comments and send trackbacks when you blog about the papers. Here are my own picks for the week – you go and look for your own favourites:

The Political Gender Gap: Gender Bias in Facial Inferences that Predict Voting Behavior:

Throughout human history, a disproportionate degree of political power around the world has been held by men. Even in democracies where the opportunity to serve in top political positions is available to any individual elected by the majority of their constituents, most of the highest political offices are occupied by male leaders. What psychological factors underlie this political gender gap? Contrary to the notion that people use deliberate, rational strategies when deciding whom to vote for in major political elections, research indicates that people use shallow decision heuristics, such as impressions of competence solely from a candidate’s facial appearance, when deciding whom to vote for. Because gender has previously been shown to affect a number of inferences made from the face, here we investigated the hypothesis that gender of both voter and candidate affects the kinds of facial impressions that predict voting behavior. Male and female voters judged a series of male and female political candidates on how competent, dominant, attractive and approachable they seemed based on their facial appearance. Then they saw a series of pairs of political candidates and decided which politician they would vote for in a hypothetical election for President of the United States. Results indicate that both gender of voter and candidate affect the kinds of facial impressions that predict voting behavior. All voters are likely to vote for candidates who appear more competent. However, male candidates that appear more approachable and female candidates who appear more attractive are more likely to win votes. In particular, men are more likely to vote for attractive female candidates whereas women are more likely to vote for approachable male candidates. Here we reveal gender biases in the intuitive heuristics that voters use when deciding whom to vote for in major political elections. Our findings underscore the impact of gender and physical appearance on shaping voter decision-making and provide novel insight into the psychological foundations underlying the political gender gap.

Aboveground Herbivory Shapes the Biomass Distribution and Flux of Soil Invertebrates:

Living soil invertebrates provide a universal currency for quality that integrates physical and chemical variables with biogeography as the invertebrates reflect their habitat and most ecological changes occurring therein. The specific goal was the identification of “reference” states for soil sustainability and ecosystem functioning in grazed vs. ungrazed sites. Bacterial cells were counted by fluorescent staining and combined direct microscopy and automatic image analysis; invertebrates (nematodes, mites, insects, oligochaetes) were sampled and their body size measured individually to allow allometric scaling. Numerical allometry analyses food webs by a direct comparison of weight averages of components and thus might characterize the detrital soil food webs of our 135 sites regardless of taxonomy. Sharp differences in the frequency distributions are shown. Overall higher biomasses of invertebrates occur in grasslands, and all larger soil organisms differed remarkably. Strong statistical evidence supports a hypothesis explaining from an allometric perspective how the faunal biomass distribution and the energetic flux are affected by livestock, nutrient availability and land use. Our aim is to propose faunal biomass flux and biomass distribution as quantitative descriptors of soil community composition and function, and to illustrate the application of these allometric indicators to soil systems.

Genetically-Based Olfactory Signatures Persist Despite Dietary Variation:

Individual mice have a unique odor, or odortype, that facilitates individual recognition. Odortypes, like other phenotypes, can be influenced by genetic and environmental variation. The genetic influence derives in part from genes of the major histocompatibility complex (MHC). A major environmental influence is diet, which could obscure the genetic contribution to odortype. Because odortype stability is a prerequisite for individual recognition under normal behavioral conditions, we investigated whether MHC-determined urinary odortypes of inbred mice can be identified in the face of large diet-induced variation. Mice trained to discriminate urines from panels of mice that differed both in diet and MHC type found the diet odor more salient in generalization trials. Nevertheless, when mice were trained to discriminate mice with only MHC differences (but on the same diet), they recognized the MHC difference when tested with urines from mice on a different diet. This indicates that MHC odor profiles remain despite large dietary variation. Chemical analyses of urinary volatile organic compounds (VOCs) extracted by solid phase microextraction (SPME) and analyzed by gas chromatography/mass spectrometry (GC/MS) are consistent with this inference. Although diet influenced VOC variation more than MHC, with algorithmic training (supervised classification) MHC types could be accurately discriminated across different diets. Thus, although there are clear diet effects on urinary volatile profiles, they do not obscure MHC effects.

Independence of Echo-Threshold and Echo-Delay in the Barn Owl:

Despite their prevalence in nature, echoes are not perceived as events separate from the sounds arriving directly from an active source, until the echo’s delay is long. We measured the head-saccades of barn owls and the responses of neurons in their auditory space-maps while presenting a long duration noise-burst and a simulated echo. Under this paradigm, there were two possible stimulus segments that could potentially signal the location of the echo. One was at the onset of the echo; the other, after the offset of the direct (leading) sound, when only the echo was present. By lengthening the echo’s duration, independently of its delay, spikes and saccades were evoked by the source of the echo even at delays that normally evoked saccades to only the direct source. An echo’s location thus appears to be signaled by the neural response evoked after the offset of the direct sound.

Mosaic Convergence of Rodent Dentitions:

Understanding mechanisms responsible for changes in tooth morphology in the course of evolution is an area of investigation common to both paleontology and developmental biology. Detailed analyses of molar tooth crown shape have shown frequent homoplasia in mammalian evolution, which requires accurate investigation of the evolutionary pathways provided by the fossil record. The necessity of preservation of an effective occlusion has been hypothesized to functionally constrain crown morphological changes and to also facilitate convergent evolution. The Muroidea superfamily constitutes a relevant model for the study of molar crown diversification because it encompasses one third of the extant mammalian biodiversity. Combined microwear and 3D-topographic analyses performed on fossil and extant muroid molars allow for a first quantification of the relationships between changes in crown morphology and functionality of occlusion. Based on an abundant fossil record and on a well resolved phylogeny, our results show that the most derived functional condition associates longitudinal chewing and non interlocking of cusps. This condition has been reached at least 7 times within muroids via two main types of evolutionary pathways each respecting functional continuity. In the first type, the flattening of tooth crown which induces the removal of cusp interlocking occurs before the rotation of the chewing movement. In the second type however, flattening is subsequent to rotation of the chewing movement which can be associated with certain changes in cusp morphology. The reverse orders of the changes involved in these different pathways reveal a mosaic evolution of mammalian dentition in which direction of chewing and crown shape seem to be partly decoupled. Either can change in respect to strong functional constraints affecting occlusion which thereby limit the number of the possible pathways. Because convergent pathways imply distinct ontogenetic trajectories, new Evo/Devo comparative studies on cusp morphogenesis are necessary.