A Blog Around The Clock

New and Exciting in PLoS ONE

There are 15 new articles in PLoS ONE today. As always, you should rate the articles, post notes and comments and send trackbacks when you blog about the papers. You can now also easily place articles on various social services (CiteULike, Connotea, Stumbleupon, Facebook and Digg) with just one click. Here are my own picks for the week – you go and look for your own favourites:

Preparing the Perfect Cuttlefish Meal: Complex Prey Handling by Dolphins:

Dolphins are well known for their complex social and foraging behaviours. Direct underwater observations of wild dolphin feeding behaviour however are rare. At mass spawning aggregations of giant cuttlefish (Sepia apama) in the Upper Spencer Gulf in South Australia, a wild female Indo-Pacific bottlenose dolphin (Tursiops aduncus) was observed and recorded repeatedly catching, killing and preparing cuttlefish for consumption using a specific and ordered sequence of behaviours. Cuttlefish were herded to a sand substrate, pinned to the seafloor, killed by downward thrust, raised mid-water and beaten by the dolphin with its snout until the ink was released and drained. The deceased cuttlefish was then returned to the seafloor, inverted and forced along the sand substrate in order to strip the thin dorsal layer of skin off the mantle, thus releasing the buoyant calcareous cuttlebone. This stepped behavioural sequence significantly improves prey quality through 1) removal of the ink (with constituent melanin and tyrosine), and 2) the calcareous cuttlebone. Observations of foraging dolphin pods from above-water at this site (including the surfacing of intact clean cuttlebones) suggest that some or all of this prey handling sequence may be used widely by dolphins in the region. Aspects of the unique mass spawning aggregations of giant cuttlefish in this region of South Australia may have contributed to the evolution of this behaviour through both high abundances of spawning and weakened post-spawning cuttlefish in a small area (>10,000 animals on several kilometres of narrow rocky reef), as well as potential long-term and regular visitation by dolphin pods to this site.

Perceptual Other-Race Training Reduces Implicit Racial Bias:

Implicit racial bias denotes socio-cognitive attitudes towards other-race groups that are exempt from conscious awareness. In parallel, other-race faces are more difficult to differentiate relative to own-race faces – the “Other-Race Effect.” To examine the relationship between these two biases, we trained Caucasian subjects to better individuate other-race faces and measured implicit racial bias for those faces both before and after training. Two groups of Caucasian subjects were exposed equally to the same African American faces in a training protocol run over 5 sessions. In the individuation condition, subjects learned to discriminate between African American faces. In the categorization condition, subjects learned to categorize faces as African American or not. For both conditions, both pre- and post-training we measured the Other-Race Effect using old-new recognition and implicit racial biases using a novel implicit social measure – the “Affective Lexical Priming Score” (ALPS). Subjects in the individuation condition, but not in the categorization condition, showed improved discrimination of African American faces with training. Concomitantly, subjects in the individuation condition, but not the categorization condition, showed a reduction in their ALPS. Critically, for the individuation condition only, the degree to which an individual subject’s ALPS decreased was significantly correlated with the degree of improvement that subject showed in their ability to differentiate African American faces. Our results establish a causal link between the Other-Race Effect and implicit racial bias. We demonstrate that training that ameliorates the perceptual Other-Race Effect also reduces socio-cognitive implicit racial bias. These findings suggest that implicit racial biases are multifaceted, and include malleable perceptual skills that can be modified with relatively little training.

Are Hox Genes Ancestrally Involved in Axial Patterning? Evidence from the Hydrozoan Clytia hemisphaerica (Cnidaria):

The early evolution and diversification of Hox-related genes in eumetazoans has been the subject of conflicting hypotheses concerning the evolutionary conservation of their role in axial patterning and the pre-bilaterian origin of the Hox and ParaHox clusters. The diversification of Hox/ParaHox genes clearly predates the origin of bilaterians. However, the existence of a “Hox code” predating the cnidarian-bilaterian ancestor and supporting the deep homology of axes is more controversial. This assumption was mainly based on the interpretation of Hox expression data from the sea anemone, but growing evidence from other cnidarian taxa puts into question this hypothesis. Hox, ParaHox and Hox-related genes have been investigated here by phylogenetic analysis and in situ hybridisation in Clytia hemisphaerica, an hydrozoan species with medusa and polyp stages alternating in the life cycle. Our phylogenetic analyses do not support an origin of ParaHox and Hox genes by duplication of an ancestral ProtoHox cluster, and reveal a diversification of the cnidarian HOX9-14 genes into three groups called A, B, C. Among the 7 examined genes, only those belonging to the HOX9-14 and the CDX groups exhibit a restricted expression along the oral-aboral axis during development and in the planula larva, while the others are expressed in very specialised areas at the medusa stage. Cross species comparison reveals a strong variability of gene expression along the oral-aboral axis and during the life cycle among cnidarian lineages. The most parsimonious interpretation is that the Hox code, collinearity and conservative role along the antero-posterior axis are bilaterian innovations.

Alternative Complement Activity in the Egg Cytosol of Amphioxus Branchiostoma belcheri: Evidence for the Defense Role of Maternal Complement Components:

The eggs in most invertebrates are fertilized externally, and therefore their resulting embryos are exposed to an environment full of microbes, many of which are pathogens capable of killing other organisms. How the developing embryos of invertebrates defend themselves against pathogenic attacks is an intriguing question to biologists, and remains largely unknown. Here we clearly demonstrated that the egg cytosol prepared from the newly fertilized eggs of amphioxus Branchiostoma belcheri, an invertebrate chordate, was able to inhibit the growth of both the Gram-negative bacterium Vibrio anguillarum and the Gram-positive bacterium Staphylococcus aureus. All findings point to that it is the complement system operating via the alternative pathway that is attributable to the bacteriostatic activity. This appears to be the first report providing the evidence for the functional role of the maternal complement components in the eggs of invertebrate species, paving the way for the study of maternal immunity in other invertebrate organisms whose eggs are fertilized in vitro. It also supports the notion that the early developing embryos share some defense mechanisms common with the adult species.

Antimicrobial Peptide Evolution in the Asiatic Honey Bee Apis cerana:

The Asiatic honeybee, Apis cerana Fabricius, is an important honeybee species in Asian countries. It is still found in the wild, but is also one of the few bee species that can be domesticated. It has acquired some genetic advantages and significantly different biological characteristics compared with other Apis species. However, it has been less studied, and over the past two decades, has become a threatened species in China. We designed primers for the sequences of the four antimicrobial peptide cDNA gene families (abaecin, defensin, apidaecin, and hymenoptaecin) of the Western honeybee, Apis mellifera L. and identified all the antimicrobial peptide cDNA genes in the Asiatic honeybee for the first time. All the sequences were amplified by reverse transcriptase-polymerase chain reaction (RT-PCR). In all, 29 different defensin cDNA genes coding 7 different defensin peptides, 11 different abaecin cDNA genes coding 2 different abaecin peptides, 13 different apidaecin cDNA genes coding 4 apidaecin peptides and 34 different hymenoptaecin cDNA genes coding 13 different hymenoptaecin peptides were cloned and identified from the Asiatic honeybee adult workers. Detailed comparison of these four antimicrobial peptide gene families with those of the Western honeybee revealed that there are many similarities in the quantity and amino acid components of peptides in the abaecin, defensin and apidaecin families, while many more hymenoptaecin peptides are found in the Asiatic honeybee than those in the Western honeybee (13 versus 1). The results indicated that the Asiatic honeybee adult generated more variable antimicrobial peptides, especially hymenoptaecin peptides than the Western honeybee when stimulated by pathogens or injury. This suggests that, compared to the Western honeybee that has a longer history of domestication, selection on the Asiatic honeybee has favored the generation of more variable antimicrobial peptides as protection against pathogens.

Comments

The site is currently under maintenance and will be back shortly. New comments have been disabled during this time, please check back soon.