A Blog Around The Clock

New and Exciting in PLoS this week

There are new articles in PLoS ONE, PLoS Genetics and PLoS Computational Biology today. As always, you should rate the articles, post notes and comments and send trackbacks when you blog about the papers. You can now also easily place articles on various social services (CiteULike, Mendeley, Connotea, Stumbleupon, Facebook and Digg) with just one click. Here are my own picks for the week – you go and look for your own favourites:

Does the Clock Make the Poison? Circadian Variation in Response to Pesticides:

Circadian clocks govern daily physiological and molecular rhythms, and putative rhythms in expression of xenobiotic metabolizing (XM) genes have been described in both insects and mammals. Such rhythms could have important consequences for outcomes of chemical exposures at different times of day. To determine whether reported XM gene expression rhythms result in functional rhythms, we examined daily profiles of enzyme activity and dose responses to the pesticides propoxur, deltamethrin, fipronil, and malathion. Published microarray expression data were examined for temporal patterns. Male Drosophila were collected for ethoxycoumarin-O-deethylase (ECOD), esterase, glutathione-S-transferase (GST), and, and uridine 5′-diphosphoglucosyltransferase (UGT) enzyme activity assays, or subjected to dose-response tests at four hour intervals throughout the day in both light/dark and constant light conditions. Peak expression of several XM genes cluster in late afternoon. Significant diurnal variation was observed in ECOD and UGT enzyme activity, however, no significant daily variation was observed in esterase or GST activity. Daily profiles of susceptibility to lethality after acute exposure to propoxur and fipronil showed significantly increased resistance in midday, while susceptibility to deltamethrin and malathion varied little. In constant light, which interferes with clock function, the daily variation in susceptibility to propoxur and in ECOD and UGT enzyme activity was depressed. Expression and activities of specific XM enzymes fluctuate during the day, and for specific insecticides, the concentration resulting in 50% mortality varies significantly during the day. Time of day of chemical exposure should be an important consideration in experimental design, use of pesticides, and human risk assessment.

Recent and Widespread Rapid Morphological Change in Rodents:

In general, rapid morphological change in mammals has been infrequently documented. Examples that do exist are almost exclusively of rodents on islands. Such changes are usually attributed to selective release or founder events related to restricted gene flow in island settings. Here we document rapid morphological changes in rodents in 20 of 28 museum series collected on four continents, including 15 of 23 mainland sites. Approximately 17,000 measurements were taken of 1302 rodents. Trends included both increases and decreases in the 15 morphological traits measured, but slightly more trends were towards larger size. Generalized linear models indicated that changes in several of the individual morphological traits were associated with changes in human population density, current temperature gradients, and/or trends in temperature and precipitation. When we restricted these analyses to samples taken in the US (where data on human population trends were presumed to be more accurate), we found changes in two additional traits to be positively correlated with changes in human population density. Principle component analysis revealed general trends in cranial and external size, but these general trends were uncorrelated with climate or human population density. Our results indicate that over the last 100+ years, rapid morphological change in rodents has occurred quite frequently, and that these changes have taken place on the mainland as well as on islands. Our results also suggest that these changes may be driven, at least in part, by human population growth and climate change.

Scientists←Editors←Scientists: The Past, Present, and Future of PLoS Genetics:

PLoS Genetics is different: different not only because of the PLoS-wide vision for open access and new ways of communicating science, but also in terms of administration and leadership. We are, first and foremost, a community journal, where editorial decisions and direction are made by consensus. This model, where responsibility is distributed among a team of more than 80 working scientists in a way that promotes and encourages discussion, has been nourished and developed fully by Wayne Frankel, who has been with the journal since its inception, and first introduced us to PLoS Genetics exactly four years ago. As the founding Editor-in-Chief, Wayne brought us to where we are today–with nearly 150 new submissions per month, a scope that covers the entire tree of life (and occasionally synthetic biology), and a focus on scientific substance together with a goal of serving the interests of both readers and authors. In making the transition from scientist to Editor-in-Chief, and again to scientist earlier this year, Wayne’s contributions have shown how one role can strengthen the other. Happily, he remains an active member of the Editorial Board, shepherding and consulting on manuscripts in the areas of mammalian genetics and neurobiology.

Evolution of a Novel Appendage Ground Plan in Water Striders Is Driven by Changes in the Hox Gene Ultrabithorax:

Water striders are derived semi-aquatic bugs that possess a remarkable diversity of leg lengths and shapes among species and between sexes, and the selective forces shaping this diversity are well studied. The transition to living on the water surface was accompanied by dramatic changes in the size and function of their legs. The mid-legs are disproportionately long and function as oars, whereas the hind-legs are shorter and function as rudders. We present evidence demonstrating that changes in the pattern of expression and function of the Hox gene Ultrabithorax are responsible for establishing the relative size differences between mid- and hind-legs in the water strider Gerris buenoi. These changes in Ubx expression and function may have been a key event in the evolution of the distinct appendage ground plan in water striders.

Mobile Phone Radiation Induces Reactive Oxygen Species Production and DNA Damage in Human Spermatozoa In Vitro:

In recent times there has been some controversy over the impact of electromagnetic radiation on human health. The significance of mobile phone radiation on male reproduction is a key element of this debate since several studies have suggested a relationship between mobile phone use and semen quality. The potential mechanisms involved have not been established, however, human spermatozoa are known to be particularly vulnerable to oxidative stress by virtue of the abundant availability of substrates for free radical attack and the lack of cytoplasmic space to accommodate antioxidant enzymes. Moreover, the induction of oxidative stress in these cells not only perturbs their capacity for fertilization but also contributes to sperm DNA damage. The latter has, in turn, been linked with poor fertility, an increased incidence of miscarriage and morbidity in the offspring, including childhood cancer. In light of these associations, we have analyzed the influence of RF-EMR on the cell biology of human spermatozoa in vitro. Purified human spermatozoa were exposed to radio-frequency electromagnetic radiation (RF-EMR) tuned to 1.8 GHz and covering a range of specific absorption rates (SAR) from 0.4 W/kg to 27.5 W/kg. In step with increasing SAR, motility and vitality were significantly reduced after RF-EMR exposure, while the mitochondrial generation of reactive oxygen species and DNA fragmentation were significantly elevated (P<0.001). Furthermore, we also observed highly significant relationships between SAR, the oxidative DNA damage bio-marker, 8-OH-dG, and DNA fragmentation after RF-EMR exposure. RF-EMR in both the power density and frequency range of mobile phones enhances mitochondrial reactive oxygen species generation by human spermatozoa, decreasing the motility and vitality of these cells while stimulating DNA base adduct formation and, ultimately DNA fragmentation. These findings have clear implications for the safety of extensive mobile phone use by males of reproductive age, potentially affecting both their fertility and the health and wellbeing of their offspring.

The Impact of Spatial Incongruence on an Auditory-Visual Illusion:

The sound-induced flash illusion is an auditory-visual illusion – when a single flash is presented along with two or more beeps, observers report seeing two or more flashes. Previous research has shown that the illusion gradually disappears as the temporal delay between auditory and visual stimuli increases, suggesting that the illusion is consistent with existing temporal rules of neural activation in the superior colliculus to multisensory stimuli. However little is known about the effect of spatial incongruence, and whether the illusion follows the corresponding spatial rule. If the illusion occurs less strongly when auditory and visual stimuli are separated, then integrative processes supporting the illusion must be strongly dependant on spatial congruence. In this case, the illusion would be consistent with both the spatial and temporal rules describing response properties of multisensory neurons in the superior colliculus. The main aim of this study was to investigate the importance of spatial congruence in the flash-beep illusion. Selected combinations of one to four short flashes and zero to four short 3.5 KHz tones were presented. Observers were asked to count the number of flashes they saw. After replication of the basic illusion using centrally-presented stimuli, the auditory and visual components of the illusion stimuli were presented either both 10 degrees to the left or right of fixation (spatially congruent) or on opposite (spatially incongruent) sides, for a total separation of 20 degrees. The sound-induced flash fission illusion was successfully replicated. However, when the sources of the auditory and visual stimuli were spatially separated, perception of the illusion was unaffected, suggesting that the “spatial rule” does not extend to describing behavioural responses in this illusion. We also find no evidence for an associated “fusion” illusion reportedly occurring when multiple flashes are accompanied by a single beep.