A Blog Around The Clock

New and Exciting in PLoS ONE

There are 31 new articles in PLoS ONE today. As always, you should rate the articles, post notes and comments and send trackbacks when you blog about the papers. You can now also easily place articles on various social services (CiteULike, Mendeley, Connotea, Stumbleupon, Facebook and Digg) with just one click. Here are my own picks for the week – you go and look for your own favourites:

A Dominance Hierarchy of Auditory Spatial Cues in Barn Owls:

Barn owls integrate spatial information across frequency channels to localize sounds in space. We presented barn owls with synchronous sounds that contained different bands of frequencies (3-5 kHz and 7-9 kHz) from different locations in space. When the owls were confronted with the conflicting localization cues from two synchronous sounds of equal level, their orienting responses were dominated by one of the sounds: they oriented toward the location of the low frequency sound when the sources were separated in azimuth; in contrast, they oriented toward the location of the high frequency sound when the sources were separated in elevation. We identified neural correlates of this behavioral effect in the optic tectum (OT, superior colliculus in mammals), which contains a map of auditory space and is involved in generating orienting movements to sounds. We found that low frequency cues dominate the representation of sound azimuth in the OT space map, whereas high frequency cues dominate the representation of sound elevation. We argue that the dominance hierarchy of localization cues reflects several factors: 1) the relative amplitude of the sound providing the cue, 2) the resolution with which the auditory system measures the value of a cue, and 3) the spatial ambiguity in interpreting the cue. These same factors may contribute to the relative weighting of sound localization cues in other species, including humans.

Human Direct Actions May Alter Animal Welfare, a Study on Horses (Equus caballus):

Back pain is the cause of bad welfare in humans and animals. Although vertebral problems are regularly reported on riding horses, these problems are not always identified nor noticed enough to prevent these horses to be used for work. Nineteen horses from two riding centres were submitted to chiropractic examinations performed by an experienced chiropractor and both horses’ and riders’ postures were observed during a riding lesson. The results show that 74% of horses were severely affected by vertebral problems, while only 26% were mildly or not affected. The degree of vertebral problems identified at rest was statistically correlated with horses’ attitudes at work (neck height and curve), and horses’ attitudes at work were clearly correlated with riders’ positions. Clear differences appeared between schools concerning both riders’ and horses’ postures, and the analysis of the teachers’ speech content and duration highlighted differences in the attention devoted to the riders’ position. These findings are to our knowledge the first to underline the impact of riding on horses’ back problems and the importance of teaching proper balance to beginner riders in order to increase animals’ welfare.

A Currency for Offsetting Energy Development Impacts: Horse-Trading Sage-Grouse on the Open Market:

Biodiversity offsets provide a mechanism to compensate for unavoidable damages from new energy development as the U.S. increases its domestic production. Proponents argue that offsets provide a partial solution for funding conservation while opponents contend the practice is flawed because offsets are negotiated without the science necessary to backup resulting decisions. Missing in negotiations is a biologically-based currency for estimating sufficiency of offsets and a framework for applying proceeds to maximize conservation benefits. Here we quantify a common currency for offsets for greater sage-grouse (Centrocercus urophasianus) by estimating number of impacted birds at 4 levels of development commonly permitted. Impacts were indiscernible at 1-12 wells per 32.2 km2. Above this threshold lek losses were 2-5 times greater inside than outside of development and bird abundance at remaining leks declined by −32 to −77%. Findings reiterated the importance of time-lags as evidenced by greater impacts 4 years after initial development. Clustering well locations enabled a few small leks to remain active inside of developments. Documented impacts relative to development intensity can be used to forecast biological trade-offs of newly proposed or ongoing developments, and when drilling is approved, anticipated bird declines form the biological currency for negotiating offsets. Monetary costs for offsets will be determined by true conservation cost to mitigate risks such as sagebrush tillage to other populations of equal or greater number. If this information is blended with landscape level conservation planning, the mitigation hierarchy can be improved by steering planned developments away from conservation priorities, ensuring compensatory mitigation projects deliver a higher return for conservation that equate to an equal number of birds in the highest priority areas, provide on-site mitigation recommendations, and provide a biologically based cost for mitigating unavoidable impacts.

Characterisation of Nitric Oxide Synthase in Three Cnidarian-Dinoflagellate Symbioses:

Nitric oxide synthase (NOS) is an enzyme catalysing the conversion of L-arginine to L-citrulline and nitric oxide (NO), the latter being an essential messenger molecule for a range of biological processes. Whilst its role in higher vertebrates is well understood little is known about the role of this enzyme in early metazoan groups. For instance, NOS-mediated signalling has been associated with Cnidaria-algal symbioses, however controversy remains about the contribution of enzyme activities by the individual partners of these mutualistic relationships. Using a modified citrulline assay we successfully measured NOS activity in three cnidarian-algal symbioses: the sea anemone Aiptasia pallida, the hard coral Acropora millepora, and the soft coral Lobophytum pauciflorum, so demonstrating a wide distribution of this enzyme in the phylum Cnidaria. Further biochemical (citrulline assay) and histochemical (NADPH-diaphorase) investigations of NOS in the host tissue of L. pauciflorum revealed the cytosolic and calcium dependent nature of this enzyme and its in situ localisation within the coral’s gastrodermal tissue, the innermost layer of the body wall bearing the symbiotic algae. Interestingly, enzyme activity could not be detected in symbionts freshly isolated from the cnidarians, or in cultured algal symbionts. These results suggest that NOS-mediated NO release may be host-derived, a finding that has the potential to further refine our understanding of signalling events in cnidarian-algal symbioses.

Involving Motor Capabilities in the Formation of Sensory Space Representations:

A goal of sensory coding is to capture features of sensory input that are behaviorally relevant. Therefore, a generic principle of sensory coding should take into account the motor capabilities of an agent. Up to now, unsupervised learning of sensory representations with respect to generic coding principles has been limited to passively received sensory input. Here we propose an algorithm that reorganizes an agent’s representation of sensory space by maximizing the predictability of sensory state transitions given a motor action. We applied the algorithm to the sensory spaces of a number of simple, simulated agents with different motor parameters, moving in two-dimensional mazes. We find that the optimization algorithm generates compact, isotropic representations of space, comparable to hippocampal place fields. As expected, the size and spatial distribution of these place fields-like representations adapt to the motor parameters of the agent as well as to its environment. The representations prove to be well suited as a basis for path planning and navigation. They not only possess a high degree of state-transition predictability, but also are temporally stable. We conclude that the coding principle of predictability is a promising candidate for understanding place field formation as the result of sensorimotor reorganization.

Common SNPs in FTO Gene Are Associated with Obesity Related Anthropometric Traits in an Island Population from the Eastern Adriatic Coast of Croatia:

Multiple studies have provided compelling evidence that the FTO gene variants are associated with obesity measures. The objective of the study was to investigate whether FTO variants are associated with a broad range of obesity related anthropometric traits in an island population. We examined genetic association between 29 FTO SNPs and a comprehensive set of anthropometric traits in 843 unrelated individuals from an island population in the eastern Adriatic coast of Croatia. The traits include 11 anthropometrics (height, weight, waist circumference, hip circumference, bicondilar upper arm width, upper arm circumference, and biceps, triceps, subscapular, suprailiac and abdominal skin-fold thicknesses) and two derived measures (BMI and WHR). Using single locus score tests, 15 common SNPs were found to be significantly associated with “body fatness” measures such as weight, BMI, hip and waist circumferences with P-values ranging from 0.0004 to 0.01. Similar but less significant associations were also observed between these markers and bicondilar upper arm width and upper arm circumference. Most of these significant findings could be explained by a mediating effect of “body fatness”. However, one unique association signal between upper arm width and rs16952517 (P-value = 0.00156) could not be explained by this mediating effect. In addition, using a principle component analysis and conditional association tests adjusted for “body fatness”, two novel association signals were identified between upper arm circumference and rs11075986 (P-value = 0.00211) and rs16945088 (P-value = 0.00203). The current study confirmed the association of common variants of FTO gene with “body fatness” measures in an isolated island population. We also observed evidence of pleiotropic effects of FTO gene on fat-free mass, such as frame size and muscle mass assessed by bicondilar upper arm width and upper arm circumference respectively and these pleiotropic effects might be influenced by variants that are different from the ones associated with “body fatness”.

Diagnostic Accuracy of a Rapid Influenza Test for Pandemic Influenza A H1N1:

With the current influenza A H1N1 pandemic (H1N1pdm), it is extremely important that clinicians can quickly and accurately identify influenza cases. To investigate the performance of the QuickVue Influenza A+B rapid test, we conducted a prospective study of the diagnostic accuracy of the QuickVue Influenza A+B test compared to real-time reverse transcriptase-polymerase chain reaction (RT-PCR) for influenza A H1N1pdm in Nicaraguan children aged 2 to 14 years. Rapid test sensitivity and specificity compared to real-time RT-PCR were 64.1% (95% CI 53.5, 73.9) and 98.3% (95.0, 99.6), respectively. Agreement between the two tests was 86.4% (95% CI 81.7, 90.3), and kappa was calculated to be 0.67 (95% CI 0.56, 0.76). Performance of the rapid test varied by day of presentation, with a sensitivity of 41.7% (95% CI 22.1, 63.4) for samples from children presenting on the day of symptom onset and a sensitivity of 72.1% (95% CI 59.9, 82.3) for samples from children presenting one or more days post-symptom onset. We found that the rapid test performed with moderate sensitivity and high specificity. Test performance varied by day of onset, with lower sensitivity on the day of symptom onset.