A Blog Around The Clock

New and Exciting in PLoS this week

Four out of seven PLoS journals published new articles today. Under the fold are those I personallyt found most interesting and/or ‘bloggable’. As always, you should rate the articles, post notes and comments and send trackbacks when you blog about the papers. You can now also easily place articles on various social services (CiteULike, Mendeley, Connotea, Stumbleupon, Facebook and Digg) with just one click. Here are my own picks for the week – you go and look for your own favourites:

Climate Change Risks and Conservation Implications for a Threatened Small-Range Mammal Species:

Climate change is already affecting the distributions of many species and may lead to numerous extinctions over the next century. Small-range species are likely to be a special concern, but the extent to which they are sensitive to climate is currently unclear. Species distribution modeling, if carefully implemented, can be used to assess climate sensitivity and potential climate change impacts, even for rare and cryptic species. We used species distribution modeling to assess the climate sensitivity, climate change risks and conservation implications for a threatened small-range mammal species, the Iberian desman (Galemys pyrenaicus), which is a phylogenetically isolated insectivore endemic to south-western Europe. Atlas data on the distribution of G. pyrenaicus was linked to data on climate, topography and human impact using two species distribution modeling algorithms to test hypotheses on the factors that determine the range for this species. Predictive models were developed and projected onto climate scenarios for 2070-2099 to assess climate change risks and conservation possibilities. Mean summer temperature and water balance appeared to be the main factors influencing the distribution of G. pyrenaicus. Climate change was predicted to result in significant reductions of the species’ range. However, the severity of these reductions was highly dependent on which predictor was the most important limiting factor. Notably, if mean summer temperature is the main range determinant, G. pyrenaicus is at risk of near total extinction in Spain under the most severe climate change scenario. The range projections for Europe indicate that assisted migration may be a possible long-term conservation strategy for G. pyrenaicus in the face of global warming. Climate change clearly poses a severe threat to this illustrative endemic species. Our findings confirm that endemic species can be highly vulnerable to a warming climate and highlight the fact that assisted migration has potential as a conservation strategy for species threatened by climate change.

Evolutionary Establishment of Moral and Double Moral Standards through Spatial Interactions:

Why do friends spontaneously come up with mutually accepted rules, cooperation, and solidarity, while the creation of shared moral standards often fails in large communities? In a “global village”, where everybody may interact with anybody else, it is not worthwhile to punish people who cheat. Moralists (cooperative individuals who undertake punishment efforts) disappear because of their disadvantage compared to cooperators who do not punish (so-called “second-order free-riders”). However, cooperators are exploited by free-riders. This creates a “tragedy of the commons”, where everybody is uncooperative in the end. Yet, when people interact with friends or local neighbors, as most people do, moralists can escape the direct competition with non-punishing cooperators by separating from them. Moreover, in the competition with free-riders, moralists can defend their interests better than non-punishing cooperators. Therefore, while seriously depleted in the beginning, moralists can finally spread all over the world (“who laughs last laughs best effect”). Strikingly, the presence of a few non-cooperative individuals (“deviant behavior”) can accelerate the victory of moralists. In order to spread, moralists may also form an “unholy cooperation” with people having double moral standards, i.e., free-riders who punish non-cooperative behavior, while being uncooperative themselves.

Genetic Tests for Ecological and Allopatric Speciation in Anoles on an Island Archipelago:

Over the last 150 years, since Darwin’s study of islands and his “Origin of Species,” island archipelagos have played a central role in the understanding of evolution and how species multiply (speciation). Islands epitomise the conventional view of geographic (allopatric) speciation, where genomes diverge in isolation until accumulated differences result in reproductive isolation and the capacity to coexist without interbreeding. Current-day Martinique in the Lesser Antilles is composed of several ancient islands that have only recently coalesced into a single entity. The molecular phylogeny and geology show that these ancient islands have had their own tree lizard (anole) species for a very long time, about six to eight million years. Now they have met, we can genetically test for reproductive isolation. However, when we use selectively neutral markers from the nuclear genome, on this naturally replicated system, we can see that these anoles are freely exchanging genes and not behaving as species. Indeed, there is more genetic isolation between adjacent populations of the same species from different habitats than between separate putative allospecies from the ancient islands. This rejects allopatric speciation in a case study from a system thought to exemplify it, and suggests the potential importance of ecological speciation.

Bacterial Communities of Two Ubiquitous Great Barrier Reef Corals Reveals Both Site- and Species-Specificity of Common Bacterial Associates:

Coral-associated bacteria are increasingly considered to be important in coral health, and altered bacterial community structures have been linked to both coral disease and bleaching. Despite this, assessments of bacterial communities on corals rarely apply sufficient replication to adequately describe the natural variability. Replicated data such as these are crucial in determining potential roles of bacteria on coral. Denaturing Gradient Gel Electrophoresis (DGGE) of the V3 region of the 16S ribosomal DNA was used in a highly replicated approach to analyse bacterial communities on both healthy and diseased corals. Although site-specific variations in the bacterial communities of healthy corals were present, host species-specific bacterial associates within a distinct cluster of gamma-proteobacteria could be identified, which are potentially linked to coral health. Corals affected by “White Syndrome” (WS) underwent pronounced changes in their bacterial communities in comparison to healthy colonies. However, the community structure and bacterial ribotypes identified in diseased corals did not support the previously suggested theory of a bacterial pathogen as the causative agent of the syndrome. This is the first study to employ large numbers of replicated samples to assess the bacterial communities of healthy and diseased corals, and the first culture-independent assessment of bacterial communities on WS affected Acroporid corals on the GBR. Results indicate that a minimum of 6 replicate samples are required in order to draw inferences on species, spatial or health-related changes in community composition, as a set of clearly distinct bacterial community profiles exist in healthy corals. Coral bacterial communities may be both site and species specific. Furthermore, a cluster of gamma-proteobacterial ribotypes may represent a group of specific common coral and marine invertebrate associates. Finally, the results did not support the contention that a single bacterial pathogen may be the causative agent of WS Acroporids on the GBR.

PLoS Computational Biology Conference Postcards from PSB 2010:

Welcome to PLoS Conference Postcards. Postcards, as the name suggests, are designed to vividly recount to those not at a conference what happened at the event that was scientifically noteworthy and therefore make the reader wish they had attended. Postcards aim to be a departure from routine conference reports since they are written through the young and enthusiastic eyes of graduate students and postdoctoral fellows who intentionally focus on a small subset of what transpires at the meeting–from keynotes to research paper presentations to posters to working group discussions. In fact, Postcard writers may choose anything at the conference that is scientifically exciting. They are expected to accurately report on the aspect that excites them, but are free to provide additional commentary based on their own research into the topic or on the opinions of other participants, or after speaking with the speaker or poster presenter directly. Which Postcards are published is at the discretion of the conference organizers and PLoS editors, who carefully review all submissions. Successful submissions are published under the authors’ names and indexed in PubMed.

A Comparison of Y-Chromosome Variation in Sardinia and Anatolia Is More Consistent with Cultural Rather than Demic Diffusion of Agriculture:

Two alternative models have been proposed to explain the spread of agriculture in Europe during the Neolithic period. The demic diffusion model postulates the spreading of farmers from the Middle East along a Southeast to Northeast axis. Conversely, the cultural diffusion model assumes transmission of agricultural techniques without substantial movements of people. Support for the demic model derives largely from the observation of frequency gradients among some genetic variants, in particular haplogroups defined by single nucleotide polymorphisms (SNPs) in the Y-chromosome. A recent network analysis of the R-M269 Y chromosome lineage has purportedly corroborated Neolithic expansion from Anatolia, the site of diffusion of agriculture. However, the data are still controversial and the analyses so far performed are prone to a number of biases. In the present study we show that the addition of a single marker, DYSA7.2, dramatically changes the shape of the R-M269 network into a topology showing a clear Western-Eastern dichotomy not consistent with a radial diffusion of people from the Middle East. We have also assessed other Y-chromosome haplogroups proposed to be markers of the Neolithic diffusion of farmers and compared their intra-lineage variation–defined by short tandem repeats (STRs)–in Anatolia and in Sardinia, the only Western population where these lineages are present at appreciable frequencies and where there is substantial archaeological and genetic evidence of pre-Neolithic human occupation. The data indicate that Sardinia does not contain a subset of the variability present in Anatolia and that the shared variability between these populations is best explained by an earlier, pre-Neolithic dispersal of haplogroups from a common ancestral gene pool. Overall, these results are consistent with the cultural diffusion and do not support the demic model of agriculture diffusion.

Absence of Evidence for MHC-Dependent Mate Selection within HapMap Populations:

There is evidence in numerous species that genes involved in immunity influence mate choice. Factors like body odor may subconsciously favor partners with different immunity alleles, to avoid inbreeding and/or endow offspring with broad resistance to pathogens. A previous study, based on HapMap genotypes, reported that European-American mates were extremely dissimilar from each other in immunity alleles compared to non-mates. Upon re-examining the results and methods, and visually comparing mates and non-mates, we found that this effect was weak, strongly dependent on extreme pairs and on arbitrary choices in methodology, and not significant after correcting for the multiple hypotheses tested. More importantly, examination of new couples from the same population did not support this hypothesis. Rare instances of very high MHC similarity among non-mates suggest that mates may avoid extreme similarity, rather than favoring dissimilarity. However, too few samples are readily available to test this prospect rigorously. We conclude that HapMap samples do not conclusively support the hypothesis that MHC genotypes exert an influence on mate choice. The same previous study reported that Yorubans appear to prefer mates who are more genetically similar to themselves overall. Our analyses suggest that the effect is driven by a subset of the sample.

Dopamine Induces Optical Changes in the Cichlid Fish Lens:

The crystalline lens in the cichlid fish Aequidens pulcher undergoes a transformation of its optical properties every dawn and dusk as the eye adapts to changes in light conditions. During dusk the transformation result in an increase of the refractive power in the lens cortex, the outermost 40 percent. The change is thought to match the optical properties of the lens to the requirements of the retina. Using a short term in vitro lens culturing system together with optical measurements we here present data that confirm that the optical properties of the lens can change within hours and that dopamine influences the optical properties of the lens. Dopamine yields dose-dependent decrease of the refractive power in the lens cortex. The D1-agonist SKF-38393 induces a similar decrease of the refractive power in the cortex, while the D2-agonist quinpirole has no effect. The effect of dopamine can be blocked by using the D1-antagonist SCH 23390. Our results suggest that dopamine alone could be responsible for the light/dark adaptive optical changes in the lens, but the involvement of other signaling substances cannot be ruled out.

Genetic Evidence for Hybrid Trait Speciation in Heliconius Butterflies:

Hybrid speciation challenges our view of biodiversity as a branching tree and is considered rare or absent in animals. A possible route by which it may occur is establishment of a novel “magic trait,” influencing both ecological adaptation and mating preference, via hybridization. We provide, to our knowledge, the first molecular genetic evidence for this process in the tropical butterfly Heliconius heurippa. We sampled molecular markers both linked to the locus controlling red color pattern and across the genome of Heliconius heurippa and its putative parents, H. cydno and H. melpomene. We found evidence of genetic introgression from H. melpomene into the hybrid H. heurippa only at the genomic region of the forewing red-band locus. This signature of introgression corresponds to the 3′ end of a kinesin gene that also shows a pattern of expression restricted to the distal region of the forewing. As the wing color pattern in these butterflies is crucial in maintaining the isolation of this species through mate choice, this study provides molecular support for the hybrid origin of a new adaptive trait that can lead to speciation.

Collective Defense of Aphis nerii and Uroleucon hypochoeridis (Homoptera, Aphididae) against Natural Enemies:

The prevalent way aphids accomplish colony defense against natural enemies is a mutualistic relationship with ants or the occurrence of a specialised soldier caste typcial for eusocial aphids, or even both. Despite a group-living life style of those aphid species lacking these defense lines, communal defense against natural predators has not yet been observed there. Individuals of Aphis nerii (Oleander aphid) and Uroleucon hypochoeridis, an aphid species feeding on Hypochoeris radicata (hairy cat’s ear), show a behavioral response to visual stimulation in the form of spinning or twitching, which is often accompanied by coordinated kicks executed with hind legs. Interestingly, this behaviour is highly synchronized among members of a colony and repetitive visual stimulation caused strong habituation. Observations of natural aphid colonies revealed that a collective twitching and kicking response (CTKR) was frequently evoked during oviposition attempts of the parasitoid wasp Aphidius colemani and during attacks of aphidophagous larvae. CTKR effectively interrupted oviposition attempts of this parasitoid wasp and even repelled this parasitoid from colonies after evoking consecutive CTKRs. In contrast, solitary feeding A. nerii individuals were not able to successfully repel this parasitoid wasp. In addition, CTKR was also evoked through gentle substrate vibrations. Laser vibrometry of the substrate revealed twitching-associated vibrations that form a train of sharp acceleration peaks in the course of a CTKR. This suggests that visual signals in combination with twitching-related substrate vibrations may play an important role in synchronising defense among members of a colony. In both aphid species collective defense in encounters with different natural enemies was executed in a stereotypical way and was similar to CTKR evoked through visual stimulation. This cooperative defense behavior provides an example of a surprising sociality that can be found in some aphid species that are not expected to be social at all.

The Brain’s Router: A Cortical Network Model of Serial Processing in the Primate Brain:

A ubiquitous aspect of brain function is its quasi-modular and massively parallel organization. The paradox is that this extraordinary parallel machine is incapable of performing a single large arithmetic calculation. How come it is so easy to recognize moving objects, but so difficult to multiply 357 times 289? And why, if we can simultaneously coordinate walking, group contours, segment surfaces, talk and listen to noisy speech, can we only make one decision at a time? Here we explored the emergence of serial processing in the primate brain. We developed a spiking-neuron implementation of a cognitive architecture in which the precise sensory-motor mapping relies on a network capable of flexibly interconnecting processors and rapidly changing its configuration from one task to another. Simulations show that, when presented with dual-task stimuli, the network exhibits parallel processing at peripheral sensory levels, a memory buffer capable of keeping the result of sensory processing on hold. However, control routing mechanisms result in serial performance at the router stage. Our results suggest that seriality in dual (or multiple) task performance results as a consequence of inhibition within the control networks needed for precise “routing” of information flow across a vast number of possible task configurations.

Raman Tweezers Spectroscopy of Live, Single Red and White Blood Cells:

An optical trap has been combined with a Raman spectrometer to make high-resolution measurements of Raman spectra of optically-immobilized, single, live red (RBC) and white blood cells (WBC) under physiological conditions. Tightly-focused, near infrared wavelength light (1064 nm) is utilized for trapping of single cells and 785 nm light is used for Raman excitation at low levels of incident power (few mW). Raman spectra of RBC recorded using this high-sensitivity, dual-wavelength apparatus has enabled identification of several additional lines; the hitherto-unreported lines originate purely from hemoglobin molecules. Raman spectra of single granulocytes and lymphocytes are interpreted on the basis of standard protein and nucleic acid vibrational spectroscopy data. The richness of the measured spectrum illustrates that Raman studies of live cells in suspension are more informative than conventional micro-Raman studies where the cells are chemically bound to a glass cover slip.

New Vaccine Design Based on Defective Genomes That Combines Features of Attenuated and Inactivated Vaccines:

New vaccine designs are needed to control diseases associated with antigenically variable RNA viruses. Foot-and-mouth disease (FMD) is a highly contagious disease of livestock that inflicts severe economic losses. Although the current whole-virus chemically inactivated vaccine has proven effective, it has led to new outbreaks of FMD because of incomplete inactivation of the virus or the escape of infectious virus from vaccine production premises. We have previously shown that serial passages of FMD virus (FMDV) C-S8c1 at high multiplicity of infection in cell culture resulted in virus populations consisting of defective genomes that are infectious by complementation (termed C-S8p260). Here we evaluate the immunogenicity of C-S8p260, first in a mouse model system to establish a proof of principle, and second, in swine, the natural host of FMDV C-S8c1. Mice were completely protected against a lethal challenge with FMDV C-S8c1, after vaccination with a single dose of C-S8p260. Pigs immunized with different C-S8p260 doses and challenged with FMDV C-S8c1 either did not develop any clinical signs or showed delayed and mild disease symptoms. C-S8p260 induced high titers of both FMDV-specific, neutralizing antibodies and activated FMDV-specific T cells in swine, that correlated with solid protection against FMDV. The defective virus-based vaccine did not produce detectable levels of transmissible FMDV. Therefore, a segmented, replication-competent form of a virus, such as FMDV C-S8p260, can provide the basis of a new generation of attenuated antiviral vaccines with two safety barriers. The design can be extended to any viral pathogen that encodes trans-acting gene products, allowing complementation between replication-competent, defective forms.

Bactericidal Performance of Visible-Light Responsive Titania Photocatalyst with Silver Nanostructures:

Titania dioxide (TiO2) photocatalyst is primarily induced by ultraviolet light irradiation. Visible-light responsive anion-doped TiO2 photocatalysts contain higher quantum efficiency under sunlight and can be used safely in indoor settings without exposing to biohazardous ultraviolet light. The antibacterial efficiency, however, remains to be further improved. Using thermal reduction method, here we synthesized silver-nanostructures coated TiO2 thin films that contain a high visible-light responsive antibacterial property. Among our tested titania substrates including TiO2, carbon-doped TiO2 [TiO2 (C)] and nitrogen-doped TiO2 [TiO2 (N)], TiO2 (N) showed the best performance after silver coating. The synergistic antibacterial effect results approximately 5 log reductions of surviving bacteria of Escherichia coli, Streptococcus pyogenes, Staphylococcus aureus and Acinetobacter baumannii. Scanning electron microscope analysis indicated that crystalline silver formed unique wire-like nanostructures on TiO2 (N) substrates, while formed relatively straight and thicker rod-shaped precipitates on the other two titania materials. Our results suggested that proper forms of silver on various titania materials could further influence the bactericidal property.

Human Telomeres Are Hypersensitive to UV-Induced DNA Damage and Refractory to Repair:

Telomeres consist of a repeated sequence located at each end of each chromosome. This repeated sequence is required for chromosomal stability and integrity, a function important for both cancer and aging. The DNA sequence of human telomeres is 5-10 kb of a repeated double-strand hexamer (5′TTAGGG/5′CCCTAA). In theory, this sequence is nearly optimal for acquiring UV-induced DNA damage. We developed a novel technique, the immunoprecipitation of DNA damage (IPoD), to study DNA damage induction and repair in the telomere and in coding regions (p53, 28S rDNA, and mitochondrial DNA). We find that human telomeres are hypersensitive to UV-induced DNA photoproducts and that the removal of those DNA photoproducts is almost absent. Cells containing persistent high levels of telomeric DNA damage nevertheless proliferate and chronic UV irradiation of cells does not accelerate telomere shortening. Telomeres are therefore unique in at least three respects: their biophysical UV sensitivity, their prevention of excision repair, and their tolerance of unrepaired lesions.

Virtual Hand Illusion Induced by Visuomotor Correlations:

Our body schema gives the subjective impression of being highly stable. However, a number of easily-evoked illusions illustrate its remarkable malleability. In the rubber-hand illusion, illusory ownership of a rubber-hand is evoked by synchronous visual and tactile stimulation on a visible rubber arm and on the hidden real arm. Ownership is concurrent with a proprioceptive illusion of displacement of the arm position towards the fake arm. We have previously shown that this illusion of ownership plus the proprioceptive displacement also occurs towards a virtual 3D projection of an arm when the appropriate synchronous visuotactile stimulation is provided. Our objective here was to explore whether these illusions (ownership and proprioceptive displacement) can be induced by only synchronous visuomotor stimulation, in the absence of tactile stimulation. To achieve this we used a data-glove that uses sensors transmitting the positions of fingers to a virtually projected hand in the synchronous but not in the asynchronous condition. The illusion of ownership was measured by means of questionnaires. Questions related to ownership gave significantly larger values for the synchronous than for the asynchronous condition. Proprioceptive displacement provided an objective measure of the illusion and had a median value of 3.5 cm difference between the synchronous and asynchronous conditions. In addition, the correlation between the feeling of ownership of the virtual arm and the size of the drift was significant. We conclude that synchrony between visual and proprioceptive information along with motor activity is able to induce an illusion of ownership over a virtual arm. This has implications regarding the brain mechanisms underlying body ownership as well as the use of virtual bodies in therapies and rehabilitation.