New and Exciting in PLoS ONE

There are 29 new articles in PLoS ONE today. As always, you should rate the articles, post notes and comments and send trackbacks when you blog about the papers. You can now also easily place articles on various social services (CiteULike, Mendeley, Connotea, Stumbleupon, Facebook and Digg) with just one click. Here are my own picks for the week - you go and look for your own favourites:

Chimpanzees Extract Social Information from Agonistic Screams:

Chimpanzee (Pan troglodytes) agonistic screams are graded vocal signals that are produced in a context-specific manner. Screams given by aggressors and victims can be discriminated based on their acoustic structure but the mechanisms of listener comprehension of these calls are currently unknown. In this study, we show that chimpanzees extract social information from these vocal signals that, combined with their more general social knowledge, enables them to understand the nature of out-of-sight social interactions. In playback experiments, we broadcast congruent and incongruent sequences of agonistic calls and monitored the response of bystanders. Congruent sequences were in accordance with existing social dominance relations; incongruent ones violated them. Subjects looked significantly longer at incongruent sequences, despite them being acoustically less salient (fewer call types from fewer individuals) than congruent ones. We concluded that chimpanzees categorised an apparently simple acoustic signal into victim and aggressor screams and used pragmatics to form inferences about third-party interactions they could not see.

Conserving the Stage: Climate Change and the Geophysical Underpinnings of Species Diversity:

Conservationists have proposed methods for adapting to climate change that assume species distributions are primarily explained by climate variables. The key idea is to use the understanding of species-climate relationships to map corridors and to identify regions of faunal stability or high species turnover. An alternative approach is to adopt an evolutionary timescale and ask ultimately what factors control total diversity, so that over the long run the major drivers of total species richness can be protected. Within a single climatic region, the temperate area encompassing all of the Northeastern U.S. and Maritime Canada, we hypothesized that geologic factors may take precedence over climate in explaining diversity patterns. If geophysical diversity does drive regional diversity, then conserving geophysical settings may offer an approach to conservation that protects diversity under both current and future climates. Here we tested how well geology predicts the species diversity of 14 US states and three Canadian provinces, using a comprehensive new spatial dataset. Results of linear regressions of species diversity on all possible combinations of 23 geophysical and climatic variables indicated that four geophysical factors; the number of geological classes, latitude, elevation range and the amount of calcareous bedrock, predicted species diversity with certainty (adj. R2 = 0.94). To confirm the species-geology relationships we ran an independent test using 18,700 location points for 885 rare species and found that 40% of the species were restricted to a single geology. Moreover, each geology class supported 5-95 endemic species and chi-square tests confirmed that calcareous bedrock and extreme elevations had significantly more rare species than expected by chance (P

The Influence of Perceptual Training on Working Memory in Older Adults:

Normal aging is associated with a degradation of perceptual abilities and a decline in higher-level cognitive functions, notably working memory. To remediate age-related deficits, cognitive training programs are increasingly being developed. However, it is not yet definitively established if, and by what mechanisms, training ameliorates effects of cognitive aging. Furthermore, a major factor impeding the success of training programs is a frequent failure of training to transfer benefits to untrained abilities. Here, we offer the first evidence of direct transfer-of-benefits from perceptual discrimination training to working memory performance in older adults. Moreover, using electroencephalography to evaluate participants before and after training, we reveal neural evidence of functional plasticity in older adult brains, such that training-induced modifications in early visual processing during stimulus encoding predict working memory accuracy improvements. These findings demonstrate the strength of the perceptual discrimination training approach by offering clear psychophysical evidence of transfer-of-benefit and a neural mechanism underlying cognitive improvement.

Very Bright Green Fluorescent Proteins from the Pontellid Copepod Pontella mimocerami:

Fluorescent proteins (FP) homologous to the green fluorescent protein (GFP) from the jellyfish Aequorea victoria have revolutionized biomedical research due to their usefulness as genetically encoded fluorescent labels. Fluorescent proteins from copepods are particularly promising due to their high brightness and rapid fluorescence development. Here we report two novel FPs from Pontella mimocerami (Copepoda, Calanoida, Pontellidae), which were identified via fluorescence screening of a bacterial cDNA expression library prepared from the whole-body total RNA of the animal. The proteins are very similar in sequence and spectroscopic properties. They possess high molar extinction coefficients (79,000 Mâ1 cmâ) and quantum yields (0.92), which make them more than two-fold brighter than the most common FP marker, EGFP. Both proteins form oligomers, which we were able to counteract to some extent by mutagenesis of the N-terminal region; however, this particular modification resulted in substantial drop in brightness. The spectroscopic characteristics of the two P. mimocerami proteins place them among the brightest green FPs ever described. These proteins may therefore become valuable additions to the in vivo imaging toolkit.

Effectiveness of Biodiversity Surrogates for Conservation Planning: Different Measures of Effectiveness Generate a Kaleidoscope of Variation:

Conservation planners represent many aspects of biodiversity by using surrogates with spatial distributions readily observed or quantified, but tests of their effectiveness have produced varied and conflicting results. We identified four factors likely to have a strong influence on the apparent effectiveness of surrogates: (1) the choice of surrogate; (2) differences among study regions, which might be large and unquantified (3) the test method, that is, how effectiveness is quantified, and (4) the test features that the surrogates are intended to represent. Analysis of an unusually rich dataset enabled us, for the first time, to disentangle these factors and to compare their individual and interacting influences. Using two data-rich regions, we estimated effectiveness using five alternative methods: two forms of incidental representation, two forms of species accumulation index and irreplaceability correlation, to assess the performance of 'forest ecosystems' and 'environmental units' as surrogates for six groups of threatened species--the test features--mammals, birds, reptiles, frogs, plants and all of these combined. Four methods tested the effectiveness of the surrogates by selecting areas for conservation of the surrogates then estimating how effective those areas were at representing test features. One method measured the spatial match between conservation priorities for surrogates and test features. For methods that selected conservation areas, we measured effectiveness using two analytical approaches: (1) when representation targets for the surrogates were achieved (incidental representation), or (2) progressively as areas were selected (species accumulation index). We estimated the spatial correlation of conservation priorities using an index known as summed irreplaceability. In general, the effectiveness of surrogates for our taxa (mostly threatened species) was low, although environmental units tended to be more effective than forest ecosystems. The surrogates were most effective for plants and mammals and least effective for frogs and reptiles. The five testing methods differed in their rankings of effectiveness of the two surrogates in relation to different groups of test features. There were differences between study areas in terms of the effectiveness of surrogates for different test feature groups. Overall, the effectiveness of the surrogates was sensitive to all four factors. This indicates the need for caution in generalizing surrogacy tests.

A Model for Transgenerational Imprinting Variation in Complex Traits:

Despite the fact that genetic imprinting, i.e., differential expression of the same allele due to its different parental origins, plays a pivotal role in controlling complex traits or diseases, the origin, action and transmission mode of imprinted genes have still remained largely unexplored. We present a new strategy for studying these properties of genetic imprinting with a two-stage reciprocal F mating design, initiated with two contrasting inbred lines. This strategy maps quantitative trait loci that are imprinted (i.e., iQTLs) based on their segregation and transmission across different generations. By incorporating the allelic configuration of an iQTL genotype into a mixture model framework, this strategy provides a path to trace the parental origin of alleles from previous generations. The imprinting effects of iQTLs and their interactions with other traditionally defined genetic effects, expressed in different generations, are estimated and tested by implementing the EM algorithm. The strategy was used to map iQTLs responsible for survival time with four reciprocal F populations and test whether and how the detected iQTLs inherit their imprinting effects into the next generation. The new strategy will provide a tool for quantifying the role of imprinting effects in the creation and maintenance of phenotypic diversity and elucidating a comprehensive picture of the genetic architecture of complex traits and diseases.

The Genetic, Morphological, and Physiological Characterization of a Dark Larval Cuticle Mutation in the Butterfly, Bicyclus anynana:

Studies on insect melanism have greatly contributed to our understanding of natural selection and the ultimate factors influencing the evolution of darkly pigmented phenotypes. Research on several species of melanic lepidopteran larvae have found that low levels of circulating juvenile hormone (JH) titers are associated with a melanic phenotype, suggesting that genetic changes in the JH biosynthetic pathway give rise to increased deposition of melanin granules in the cuticle in this group. But does melanism arise through different molecular mechanisms in different species? The present study reports on a Bicyclus anynana (Lepidoptera: Nymphalidae) dark larvae single locus mutation, in which larvae exhibit a darker cuticle relative to wild type. Unlike other lepidopteran melanic larvae mutations, this one is autosomal recessive and does not appear to involve a deficiency in JH titers. Unlike JH deficiency mutants, dark larvae mutants display similar growth rates and sexual behaviors as wild type, and topical application of a JH analogue failed to rescue the wild type cuticular coloration. Finally, transmission electron microscopy showed that sclerotization or deposition of diffuse melanin, rather than deposition of melanin granules, produces the dark coloration found in the cuticle of this species. We conclude that different molecular mechanisms underlie larval melanism in different species of Lepidoptera.

Seasonal Changes in Colour: A Comparison of Structural, Melanin- and Carotenoid-Based Plumage Colours:

Plumage coloration is important for bird communication, most notably in sexual signalling. Colour is often considered a good quality indicator, and the expression of exaggerated colours may depend on individual condition during moult. After moult, plumage coloration has been deemed fixed due to the fact that feathers are dead structures. Still, many plumage colours change after moult, although whether this affects signalling has not been sufficiently assessed. We studied changes in coloration after moult in four passerine birds (robin, Erithacus rubecula; blackbird, Turdus merula; blue tit, Cyanistes caeruleus; and great tit, Parus major) displaying various coloration types (melanin-, carotenoid-based and structural). Birds were caught regularly during three years to measure plumage reflectance. We used models of avian colour vision to derive two variables, one describing chromatic and the other achromatic variation over the year that can be compared in magnitude among different colour types. All studied plumage patches but one (yellow breast of the blue tit) showed significant chromatic changes over the year, although these were smaller than for a typical dynamic trait (bill colour). Overall, structural colours showed a reduction in relative reflectance at shorter wavelengths, carotenoid-based colours the opposite pattern, while no general pattern was found for melanin-based colours. Achromatic changes were also common, but there were no consistent patterns of change for the different types of colours. Changes of plumage coloration independent of moult are probably widespread; they should be perceivable by birds and have the potential to affect colour signalling.

A Quantitative Analysis of Flight Feather Replacement in the Moustached Tree Swift Hemiprocne mystacea, a Tropical Aerial Forager:

The functional life span of feathers is always much less than the potential life span of birds, so feathers must be renewed regularly. But feather renewal entails important energetic, time and performance costs that must be integrated into the annual cycle. Across species the time required to replace flight feather increases disproportionately with body size, resulting in complex, multiple waves of feather replacement in the primaries of many large birds. We describe the rules of flight feather replacement for Hemiprocne mystacea, a small, 60g tree swift from the New Guinea region. This species breeds and molts in all months of the year, and flight feather molt occurs during breeding in some individuals. H. mystacea is one to be the smallest species for which stepwise replacement of the primaries and secondaries has been documented; yet, primary replacement is extremely slow in this aerial forager, requiring more than 300 days if molt is not interrupted. We used growth bands to show that primaries grow at an average rate of 2.86 mm/d. The 10 primaries are a single molt series, while the 11 secondaries and five rectrices are each broken into two molt series. In large birds stepwise replacement of the primaries serves to increase the rate of primary replacement while minimizing gaps in the wing. But stepwise replacement of the wing quills in H. mystacea proceeds so slowly that it may be a consequence of the ontogeny of stepwise molting, rather than an adaptation, because the average number of growing primaries is probably lower than 1.14 feathers per wing.

Sexual Experience Promotes Adult Neurogenesis in the Hippocampus Despite an Initial Elevation in Stress Hormones:

Aversive stressful experiences are typically associated with increased anxiety and a predisposition to develop mood disorders. Negative stress also suppresses adult neurogenesis and restricts dendritic architecture in the hippocampus, a brain region associated with anxiety regulation. The effects of aversive stress on hippocampal structure and function have been linked to stress-induced elevations in glucocorticoids. Normalizing corticosterone levels prevents some of the deleterious consequences of stress, including increased anxiety and suppressed structural plasticity in the hippocampus. Here we examined whether a rewarding stressor, namely sexual experience, also adversely affects hippocampal structure and function in adult rats. Adult male rats were exposed to a sexually-receptive female once (acute) or once daily for 14 consecutive days (chronic) and levels of circulating glucocorticoids were measured. Separate cohorts of sexually experienced rats were injected with the thymidine analog bromodeoxyuridine in order to measure cell proliferation and neurogenesis in the hippocampus. In addition, brains were processed using Golgi impregnation to assess the effects of sexual experience on dendritic spines and dendritic complexity in the hippocampus. Finally, to evaluate whether sexual experience alters hippocampal function, rats were tested on two tests of anxiety-like behavior: novelty suppressed feeding and the elevated plus maze. We found that acute sexual experience increased circulating corticosterone levels and the number of new neurons in the hippocampus. Chronic sexual experience no longer produced an increase in corticosterone levels but continued to promote adult neurogenesis and stimulate the growth of dendritic spines and dendritic architecture. Chronic sexual experience also reduced anxiety-like behavior. These findings suggest that a rewarding experience not only buffers against the deleterious actions of early elevated glucocorticoids but actually promotes neuronal growth and reduces anxiety.

Dietary Determinants of Changes in Waist Circumference Adjusted for Body Mass Index - a Proxy Measure of Visceral Adiposity:

Given the recognized health effects of visceral fat, the understanding of how diet can modulate changes in the phenotype "waist circumference for a given body mass index (WCBMI)", a proxy measure of visceral adiposity, is deemed necessary. Hence, the objective of the present study was to assess the association between dietary factors and prospective changes in visceral adiposity as measured by changes in the phenotype WCBMI. We analyzed data from 48,631 men and women from 5 countries participating in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Anthropometric measurements were obtained at baseline and after a median follow-up time of 5.5 years. WCBMI was defined as the residuals of waist circumference regressed on body mass index, and annual change in WCBMI (ÎWCBMI, cm/y) was defined as the difference between residuals at follow-up and baseline, divided by follow-up time. The association between energy, energy density (ED), macronutrients, alcohol, glycemic index (GI), glycemic load (GL), fibre and ÎWCBMI was modelled using centre-specific adjusted linear regression, and random-effects meta-analyses to obtain pooled estimates. Men and women with higher ED and GI diets showed significant increases in their WCBMI, compared to those with lower ED and GI [1 kcal/g greater ED predicted a ÎWCBMI of 0.09 cm (95% CI 0.05 to 0.13) in men and 0.15 cm (95% CI 0.09 to 0.21) in women; 10 units greater GI predicted a ÎWCBMI of 0.07 cm (95% CI 0.03 to 0.12) in men and 0.06 cm (95% CI 0.03 to 0.10) in women]. Among women, lower fibre intake, higher GL, and higher alcohol consumption also predicted a higher ÎWCBMI. Results of this study suggest that a diet with low GI and ED may prevent visceral adiposity, defined as the prospective changes in WCBMI. Additional effects may be obtained among women of low alcohol, low GL, and high fibre intake.

Categories

More like this