Developing Intelligence

Category archives for   

There are three on-off light switches on the wall of the first floor of a building. One of the switches is initially off and controls an incandescent bulb in a lamp on the third floor of the building. The other two switches do not control the bulb or anything else (they are disconnected). How can…

Most computational models of working memory do not explicitly specify the role of the parietal cortex, despite an increasing number of observations that the parietal cortex is particularly important for working memory. A new paper in PNAS by Edin et al remedies this state of affairs by developing a spiking neural network model that accounts…

A number of previous behavioral and neuroimaging experiments, as well as computational models, support the idea that people can filter the contents of memory and perception so as to focus on only the information that’s currently relevant. For example, in a visually-complex environment, distracting items often go unprocessed by the human visual system, perhaps due…

One theoretical model of the prefrontal cortex posits that we can achieve goal-directed behavior via “biased competition” – that is, representations of our current goals and context are maintained in the prefrontal cortex and exert an influence on downstream areas, ultimately biasing our behavior in a goal-directed and context-appropriate way. By theory, this relatively simple…

A principal insight from computational neuroscience for studies of higher-level cognition is rooted in the recurrent network architecture. Recurrent networks, very simply, are those composed of neurons that connect to themselves, enabling them to learn to maintain information over time that may be important for behavior. Elaborations to this basic framework have incorporated mechanisms for…

When reading the title of this post, your knowledge of the world was sufficient to let you interpret the phrase “when pigs fly,” but also alerted you to the fact that it is inconsistent with much of that world knowledge: clearly, pigs don’t fly. A new study by Menenti, Petersson, Scheeringa & Hagoort localizes the…

A lot has been written about domain-general processing in prefrontal cortex, and a very old lesson often gets overlooked: there are very basic hemispheric asymmetries (particularly in PFC) that divide information processing by modality. A very nice study by Morimoto et al provide a nice reminder of this important feature of neuronal organization, and illustrates…

It’s been said that psychology is a primitive discipline – stuck in the equivalent of pre-Newtonian physics. Supposedly we haven’t discovered the basic principles underlying cognition, and are instead engaged in a kind of stamp collecting: arguing about probabilities that various pseudo-regularities are real, without having any overarching theory. Some of this criticism is deserved,…

Reductionism in the neurosciences has been incredibly productive, but it has been difficult to reconstruct how high-level behaviors emerge from the myriad biological mechanisms discovered with such reductionistic methods. This is most clearly true in the case of the motor system, which has long been studied as the programming of motor actions (at its least…

An astonishing recent discovery in computational neuroscience is the relationship between dopamine and the “temporal differences” reinforcement learning algorithm (which Jake describes wonderfully here, and I’ve described in a little more detail here). The essential principle is that the difference between expected and received reward can be used to drive learning, and that this abstract…