Standard Area	Level	Skills/ Content	Chapters
Vectors	I	Find length from components or vice versa	1
		Graphical addition/ subtraction of vectors	
		Adding and subtracting vectors by components	
	II	Find a unit vector in two or three dimensions	1,5,11
		Calculating a vector representing the change in some quantity	
		Calculating the scalar product ("dot product") of two vectors	
		Finding the direction of the vector product with the right-hand rule	
	III	Calculating the vector product ("cross product") of two vectors	1,11
Kinematics	I	Qualitative understanding of displacement, speed, velocity,	1
		acceleration	
		Describe and classify motion of objects from motion diagrams or	
		graphs	
		Sketch kinematic graphs given motion diagrams or descriptions of	
		motion	
	II	Calculate displacement, velocity, speed, acceleration of objects	1,2
		given position data	
		Predict the future position of an object in uniform motion	
		Predict the position and velocity of an object undergoing constant	
		acceleration	
	III	Calculate position and velocity for non-constant acceleration	1,2,5
		Calculate perpendicular and parallel acceleration for an object in	
		circular motion	
Momentum Principle	I	Qualitative understanding of force as an interaction	17
		Calculation of vector momentum given mass and velocity	
		Qualitative understanding of reciprocity	
		Qualitative understanding of momentum conservation	
		Qualitative understanding of forces in equilibrium	
		Drawing force diagrams	
	17	Identifying internal and external forces for a system of objects	15
	II	Calculations using momentum update for constant forces	17
		Calculations using the spring force law	

		Calculations of forces in equilibrium in 2-d or 3-d Calculations using conservation of momentum (negligible external forces) in 1-d Calculation of oscillation period for spring	
	III	Calculations using momentum update for non-constant forces Calculations using conservation of momentum in 2-d or 3-d Calculations involving forces and circular motion	17
Interactions	I	Qualitative understanding of gravitational force Qualitative understanding of electric force Calculation of magnitude of gravitational or electric force Qualitative understanding of "ball-and-spring" model for contact forces (tension, normal force) Qualitative understanding of friction and air resistance	19
	II	Calculating gravitational or electric force vectors Calculating interatomic spacing using ball-and-spring model Calculating using friction and air resistance	19
	III	Calculating interatomic spring stiffness using ball-and-spring model Calculating speed of sound in a solid Iterative calculations using air resistance	ing stiffness using ball-and-spring model in a solid
Energy Principle	I	Qualitative understanding of work and energy Calculating energy of a single-particle system Qualitative understanding of potential energy in a multi-particle system Sketch graphs of potential and kinetic energy Classification of bound and unbound systems, qualitative understanding of escape	20
	II	Calculation of potential and kinetic energy for constant forces and springs Calculation of work done by constant forces Calculation of energy transfer due to temperature difference	20
	III	Calculation of work by non-constant forces Using the Energy Principle with dissipative forces	20

Complex Systems	I	Qualitative understanding of center of mass in 3-d	18, 21
		Calculation of center of mass in 1-d	
		Calculation of moment of inertia for point masses, single shapes	
		Identifying "point particle" and "real" systems	
		Qualitative understanding of elastic and inelastic collisions	
	II	Calculating rotational kinetic energy	18,21
		Calculating moment of inertia for composite objects	
	III	Calculating using "point particle" and "real" systems	18, 21
Angular Momentum	I	Qualitative understanding of translational and rotational angular momentum	22, 23
		Qualitative understanding of torque	
		Calculation of the magnitude of the angular momentum for single	
		particles and simple solid objects	
		Calculation of the magnitude of torque	
	II	Calculation of the magnitude of torque Calculation of the vector angular momentum of single particles and	22, 23
	11	simple solid objects	22, 23
		Calculation of torque vectors	116
		Using the Angular Momentum Principle in cases of zero net torque	
		osing the ringular momentum rimerple in cases of zero net torque	
	III	Using the Angular Momentum Principle in cases of non-zero net	22, 23
		torque	
VPython	I	Reading commented code and determining what it does	
		Using code written by others to calculate simple results	
	II	Modifying code written by others to achieve a new result	
	III	Writing a VPython program with all necessary elements, including	
		comments	
Math/ Units	Ι	Correctly reporting calculated quantities with appropriate units	
	II	Correctly performing calculations to get numerical answers	
	III		
General	Ι	Identifying assumptions in a calculation or derivation	
		Identifying approximations in a calculation	

		Estimating uncertainties in a measurement
		Properly formatting graphs with axis labels, units, scaling, and
		equation(s)
	II	Understanding when to make an approximation
		Propagating uncertainties in a calculation
		Judging whether the results of a calculation are reasonable
	III	Designing an experimental procedure
Writing	I	Writing in scientific style: clear, direct, concise
		Using graphs and/or tables to illustrate and support arguments
		Using language that effectively communicates meaning and is
		virtually free of errors
	II	Organizing the presentation of ideas to provide a clear and logical
		flow for the reader
		Writing individual sections of a formal lab report as described in the
		Guide to Lab Writing
	III	Writing an entire formal lab report as described in the Guide to Lab
		Writing
Class Participation	I	Completing the diagnostic pre-test
	II	Actively participating in class discussions and in-class activities
		Completing the diagnostic post-test and making an honest effort to
		improve the score
	III	Attending talks at Steinmetz or other events as announced in class