Optogenetics

Neurophilosophy

Category archives for Optogenetics

Scared by the light

WHO could have guessed that a protein isolated from pond scum would transform the way researchers investigate the brain? The protein, called channelrhodopsin (ChR), is found in algae and other microbes, and is related to the molecule in human photoreceptors that captures light particles. Both versions control the electrical currents that constantly flow in and…

Optogenetic fMRI

OF all the techniques used by neuroscientists, none has captured the imagination of the general public more than functional magnetic resonance imaging (fMRI). The technique, which is also referred to as functional neuroimaging and, more commonly, “brain scanning”, enables us to peer into the human brain non-invasively, to observe its workings and correlate specific thought…

Optogenetics is a newly developed technique based on a group of light-sensitive proteins called channelrhodopsins, which were isolated recently from various species of micro-organism. Although relatively new, this technique has already proven to be extremely powerful, because channelrhodopsins can be targeted to specific cells, so that their activity can be controlled by light, on a…

Optogenetic therapy for spinal cord injury

Optogenetics is a recently developed technique based on microbial proteins called channelrhodopsins (ChRs), which render neurons sensitive to light when inserted into them,  thus enabling researchers to manipulate the activity of the cells using laser pulses. Although still very new – the first ChR protein was isolated from a species of green algae in 2002…

Neuronal light switches

The September issue of Scientific American contains an excellent and lengthy article about a state-of-the-art technique called optogenetics, by molecular physiologist Gero Miesenböck, who has been instrumental in its development. As its name suggests, optogenetics is a combination of optics and genetic engineering. It is a powerful new method for investigating the function of neuronal…

New research shows that a protein found in green algae can partially restore visual function when delivered into the retina of blind mice, taking us one step further towards genetic therapy for various conditions in which the degeneration of retinal cells leads to imapired vision or complete blindness.

This year, several research groups have used bacterial proteins called channelrhodopsins to develop a technique with which light can be used to control the activity of nerve cells or the behaviour of small organisms. For example, Ed Boyden’s group at the MIT Media Lab used the method to activate or inhibit neurons on a millisecond-by-millsecond…