Pharyngula

Shubin had a tough act to follow, coming after Kingsley’s great talk. I’m sure it will be good, though — last night I got a tour of his lab, saw the original Tiktaalik specimens and some new ones, and some of his work in progress (which I won’t tell you about until it’s published), so I’m confident I’m going to have a happy hour.

Darwin pulled together diverse lines of evidence to document his ideas. The different lines all reinforce each other making the argument even stronger, and what we’re seeing now is new syntheses, which is the theme of this talk: how do we use different lines of evidence to make a case that is more the sum of its parts.

The questions is the origin of limbs, fins to legs. Fins and legs look very different, with fins having rays and many bones, while legs have few bones in a fixed pattern. Intermediate taxa show us the changes, with transitions with bony core of the limb pattern and fish-like rays. He uses geology and extant fossils to make predictions about where to find intermediates, and paleontology also informs his understanding of developmental processes that build the limb.

Began his work in Pennsylvania, which was like the Amazon delta 360 million years ago. They followed the PA dept. of transportation around looking at road cuts that exposed the rocks of that age. They found many fossils, but one that changed his thinking was a fin of sauripterus, with fin rays and a core of tetrapod-like limbs. Definitely fishy, but contained precursors to the pattern.

They searched in Ellesmere Island for Devonian age rocks and fossils that would reveal the history of the limb. The logistics were very difficult, since the area is inaccessible. First started working in 1999, in rocks that were from marine sources and didn’t yield much. Moved east to freshwater sources. Found a layer of rock that was rich in bone, and found a snout of a flat-headed fish poking out. Eventually exposed about 20 specimens of this animal. Took months to fully expose the details of the specimen.

He showed off a cast of Tiktaalik — physical objects are really good at capturing people’s imagination.

It took a year and a half to prepare out the fins; the bones show articular surfaces, so you can actually see how the structure bent in life. What does this tell us about extant fins?

A tetrapod limb has 3 components: 1 bone, then 2 bones, then multiple bones in wrist and fingers. The limb forms in phases, with an early phase of hox expression that sets up the proximal bone, then phase II in which hox genes switch on in a patterned way to form digits. Are there elements of phase 2 in fish fins?

Looked in Polyodon, and embryos do have a distal phase of hox expression, not identical to tetrapod pattern, but definitely a phase 2.

What is a limb and how did it develop? The AER sets up the proximo-distal axis, ZPA sets up anteriorposterior axis. Cutting off the AER at different stages produces progressive deletions of portions of the limb. ZPA is a source of Sonic Hedgehog and sets up a gradient of positional information.

Does the common ancestor of all fish have these same two-axis signals? Chondrichthyans do, with patterns that can be manipulated in the same way as we do in chickens. The appendage patterning system is general to all vertebrate appendages.

How do fins differ from other outgrowths? Branchial arches have the same patterning, with an AER and ZPA. Seems to be a universal way for vertebrates to set up the patterning of outgrowths. Gill, fin, and limb have similar toolkits of patterning genes.

The patterning mechanisms may have originated in a general outgrowth and been coopted for limbs and gills. Shubin proposes to do targeted collecting of Ordovician vertebrates, expecting to find novel non-limb outgrowths that may be precursors to the patterning mechanism. Paleontology guided by developmental biology!