Continuing our countdown to Newton’s birthday, let’s acknowledge the contributions of one of his contemporaries and rivals with today’s equation:

This is, of course, Hooke’s Law for a spring, which he famously published in 1660:

ceiiinosssttuv

Clears everything right up, doesn’t it? OK, maybe not. This one’s not only in Latin, it’s a cryptogram, unscrambling to “ut tensio sic vis,” which translates roughly to “as the extension, so the force,” giving the correct proportionality between the force exerted by a spring or other elastic material and the amount that material has been stretched.

Why is this important? Well, because springs are incredibly important, as this video clearly demonstrates:

Deranged 1950’s educational shorts aside, springs really are very important in physics, not least because Hooke’s law is mathematically elegant. A mass hung from the end of a spring will bounce up and down in a regular way, making a simple harmonic oscillator. Plugging Hooke’s law into >a href=”http://scienceblogs.com/principles/2011/12/the_advent_calendar_of_physics.php”>Newton’s second law gets you a differential equation for the position of the mass at the end of the spring that’s among the easiest differential equations to solve. For this reason, a huge part of model-making in physics consists of finding ways to approximate other interactions as being like a spring, so you can use the simple harmonic oscillator solution as a starting point to understand what’s going on.

This approximation is essential for understanding the behavior of materials in both classical and quantum-mechanical contexts. It’s even the starting point for thinking about quantum electrodynamics, where light is treated as a collection of photons, not just a classical wave. So, Hooke’s law is a critical step in the development of physics, and while Newton didn’t much like him (some of Newton’s most famous quotes reputedly include bitchy little swipes at Hooke), it’s worth a moment to honor his accomplishment as part of our countdown to Newton’s birthday.

Come back tomorrow for the next equation of the season.

Eureka: Discovering Your Inner Scientist will be published in December 2014 by Basic Books. "This fun, diverse, and accessible look at how science works will convert even the biggest science phobe." --Publishers Weekly (starred review) "In writing that is welcoming but not overly bouncy, persuasive in a careful way but also enticing, Orzel reveals the “process of looking at the world, figuring out how things work, testing that knowledge, and sharing it with others.”...With an easy hand, Orzel ties together card games with communicating in the laboratory; playing sports and learning how to test and refine; the details of some hard science—Rutherford’s gold foil, Cavendish’s lamps and magnets—and entertaining stories that disclose the process that leads from observation to colorful narrative." --Kirkus Reviews Google+

How to Teach Relativity to Your Dog is published by Basic Books. "“Unlike quantum physics, which remains bizarre even to experts, much of relativity makes sense. Thus, Einstein’s special relativity merely states that the laws of physics and the speed of light are identical for all observers in smooth motion. This sounds trivial but leads to weird if delightfully comprehensible phenomena, provided someone like Orzel delivers a clear explanation of why.” --Kirkus Reviews "Bravo to both man and dog." The New York Times.

How to Teach Physics to Your Dog is published by Scribner. "It's hard to imagine a better way for the mathematically and scientifically challenged, in particular, to grasp basic quantum physics." -- Booklist "Chad Orzel's How to Teach Physics to Your Dog is an absolutely delightful book on many axes: first, its subject matter, quantum physics, is arguably the most mind-bending scientific subject we have; second, the device of the book -- a quantum physicist, Orzel, explains quantum physics to Emmy, his cheeky German shepherd -- is a hoot, and has the singular advantage of making the mind-bending a little less traumatic when the going gets tough (quantum physics has a certain irreducible complexity that precludes an easy understanding of its implications); finally, third, it is extremely well-written, combining a scientist's rigor and accuracy with a natural raconteur's storytelling skill." -- BoingBoing