Starts With A Bang

LIGO-VIRGO Detects The First Three-Detector Gravitational Wave (Synopsis)

Artist's impression of two merging black holes, with accretion disks. The density and energy of the matter here should be insufficient to create gamma ray or X-ray bursts, but you never know what nature holds. Image credit: NASA / Dana Berry (Skyworks Digital).

“Einstein’s gravitational theory, which is said to be the greatest single achievement of theoretical physics, resulted in beautiful relations connecting gravitational phenomena with the geometry of space; this was an exciting idea.” -Richard Feynman

For over a century after the publication of General Relativity, it was uncertain whether gravitational waves were real or not. It wasn’t until their first direct detection less than two years ago, by the LIGO scientific collaboration, that their existence was spectacularly confirmed. With the VIRGO detector in Italy coming online this year to complement the twin LIGO detectors, however, so much more became possible.

Aerial view of the Virgo gravitational-wave detector, situated at Cascina, near Pisa (Italy). Virgo is a giant Michelson laser interferometer with arms that are 3 km long, and complements the twin 4 km LIGO detectors. Image credit: Nicola Baldocchi / Virgo Collaboration.

An actual position in space could be identified for the first time, enabling a possible correlation between the gravitational wave sky and the electromagnetic one. The three-dimensional polarization of a gravitational wave could be measured, and compared with the predictions of Einstein’s theory. And gravitational wave signals can be teased out earlier and measured to smaller amplitudes than ever before. Not only have we just seen our fourth gravitational wave event, we’ve seen it in all three detectors.

This three-dimensional projection of the Milky Way galaxy onto a transparent globe shows the probable locations of the three confirmed black-hole merger events observed by the two LIGO detectors—GW150914 (dark green), GW151226 (blue), GW170104 (magenta)—and a fourth confirmed detection (GW170814, light green, lower-left) that was observed by Virgo and the LIGO detectors. Also shown (in orange) is the lower significance event, LVT151012. Image credit: LIGO/Virgo/Caltech/MIT/Leo Singer (Milky Way image: Axel Mellinger).

This discovery is, indeed, something big, but there’s even bigger science to come in the future! Come see what this first three-detector gravitational wave event has given us!