Starts With A Bang

Gravitational Waves Win 2017 Nobel Prize In Physics, The Ultimate Fusion Of Theory And Experiment (Synopsis)

A computer simulation, utilizing the advanced techniques developed by Kip Thorne and many others, allow us to tease out the predicted signals arising in gravitational waves generated by merging black holes. Image credit: Werner Benger, cc by-sa 4.0.

“Well, I walked into Building 20 and looked in at the various little labs. There was a bunch of people doing something that looked to me to be sort of interesting, and since I knew all this electronics, I asked them, “Look, can you use a guy?” And I sold myself off as a technician for about two years.” -Rai Weiss, on the start of his physics career at MIT

It’s official at long last: the 2017 Nobel Prize in Physics has been awarded to three individuals most responsible for the development and eventual direct detection of gravitational waves. Congratulations to Rainer Weiss, Kip Thorne, and Barry Barish, whose respective contributions to the experimental setup of gravitational wave detectors, theoretical predictions about which astrophysical events produce which signals, and the design-and-building of the modern LIGO interferometers helped make it all possible.

Rainer Weiss, Barry Barish and Kip Thorne are your 2017 Nobel Laureates in physics. Image credit: © Nobel Media AB 2017.

The story of directly detecting gravitational waves is so much more, however, than the story of just these three individuals, or even than the story of their collaborators. Instead, it’s the ultimate culmination of a century of theoretical, experimental, and instrumentational work, dating back to Einstein himself. It’s a story that includes physics titans Howard Robertson, Richard Feynman, and Joseph Weber. It includes Russell Hulse and Joseph Taylor, who won a Nobel decades earlier for the indirect detection of gravitational waves. And it’s the story of over 1,000 men and women who contributed to LIGO and VIRGO, bringing us into the era of gravitational wave astronomy.

The LIGO Hanford Observatory for detecting gravitational waves in Washington State, USA, is one of three operating detectors working in concert today, along with its twin in Livingston, LA, and the VIRGO detector, now online and operational in Italy. Image credit: Caltech/MIT/LIGO Laboratory.

The 2017 Nobel Prize in Physics may only go to three individuals, but it’s the ultimate fusion of theory and experiment. And yes, the best is yet to come!