Tetrapod Zoology

i-937dc75cb32d3979cfe5071dc1c03b04-Capetus Naish resize.jpg

At last, I fulfill those promises of more temnospondyls. Last time we looked at the edopoids, perhaps the most basal temnospondyl clade: here we look at the rest of the basal forms. Scary predators, marine piscivores, late-surviving relics, and some unfortunate beasts burned alive in forest fires…

Studies on temnospondyl phylogeny mostly agree that ‘post-edopoid’ temnospondyls form a clade, the most basal members of which include Capetus, Dendrerpeton and Balanerpeton (Milner & Sequeira 1994, 1998, Holmes et al. 1998, Ruta et al. 2003a, b) [though some workers have found some of these taxa to be more basal than edopoids (Steyer et al. 2006)]. In contrast to the condition in edopoids, the interpterygoid vacuities of ‘post-edopoids’ are rounded at their anterior ends, the jugal (the bone that forms the cheek region) is shortened, and the configuration of skull bones is overall less archaic and fish-like.

Among these basal ‘post-edopoids’, Dendrerpeton (from the Upper Carboniferous of Nova Scotia and Ireland) had a rather large skull with laterally facing orbits, a short body, and well-developed, robust limbs. It lacked lateral line canals and grew to c. 1 m. These features suggest that it was predominantly terrestrial (Holmes et al. 1998). Several species have been named (Milner 1996). Studies of a well-preserved, three-dimensional ear indicate that Dendrerpeton had a frog-like tympanum (ear drum) suited for the perception of airborne sounds (Robinson et al. 2005). This discovery provides support for the idea that lissamphibians descend from temnospondyls (a subject we’ll come back to much later), and indicates that at least some basal temnospondyls were listening to noises. But what were they listening to? Were they vocalizing, perhaps during the breeding season? It’s previously been argued that the temnospondyl stapes was too massive to support a tympanum (see Laurin & Soler-Gijón 2006), so note that we have to be cautious in inferring the presence of a tympanum in all temnospondyls.

i-61d9de13854de9f55b597bcc6875c7b6-Hylonomus tree stump.jpg

The Canadian Dendrerpeton specimens come from the famous Joggins Tree Stump Locality where the fossils of several tetrapod taxa (and the earliest land snails) have been discovered inside the hollowed trunks of lycopsid trees. It used to be thought that the animals had fallen into these natural traps and eventually died there of starvation, but the presence of abundant charcoal within the deposits now raises the possibility that the animals were taking refuge from forest fires, and that at least some of these unfortunate creatures were roasted alive (Falcon-Lang 1999, Scott 2001) [the adjacent picture depicts the early reptile Hylonomus, trapped in a hollow tree stump and about to be killed as a forest fire advances overhead].

Another basal temnospondyl is Balanerpeton woodi from the Viséan of East Kirkton in Scotland, a famous locality that has yielded a phenomenal diversity of Carboniferous invertebrates, fishes and early tetrapods. With a length of about 50 cm, Balanerpeton was superficially like a big salamander but it was odd in that, while the 40-42 teeth lining each half of the upper jaw were small, the 25-30 in each half of the lower jaw were much longer. The absence of lateral line canals, ossified wrist and ankle bones, and the apparent presence of eyelids indicate that it also was a terrestrial animal, although its larvae were aquatic (Milner & Sequeira 1994) [Balanerpeton skeletal reconstruction and life restoration immediately below is from Milner & Sequeira (1994), and borrowed from here].

i-a6a15b511ac2097808c68e8e16c85a0f-Balanerpeton.jpg

Also somewhere around the base of Temnospondyli was Capetus palustris from the famous Upper Carboniferous Ný?any* desposits of the Czech Republic: this is one of the richest Upper Carboniferous fossil sites in the world, yielding at least 700 tetrapod fossils, discovered from the 1870s onwards. Previously, Capetus was regarded by some authors as an edopoid, close either to Edops or to the cochleosaurids, but recent studies have shown that it is not an edopoid, being closer to Balanerpeton (Steyer et al. 2006).

* Thanks to Greg Morrow for supplying the html need to produce a caron (wedge or inverted circumflex).

Capetus was a fairly scary looking, broad-headed predator with a deep posterior lower jaw: its skull was about 40 cm long, suggesting a total length of c. 1.5 m. As Sequeira & Milner (1993) noted, this makes Capetus one of the largest tetrapods in the Ný?any assemblage. Its teeth were mostly subconical, but those in the anterior part of the lower jaw seem to have been slightly laterally compressed, and possibly with weakly developed keels. As is the case in edopoids and some other basal temnospondyls, its skull bones lack lateral line canals. Sequeira & Milner (1993) suggested that Capetus was an alligator-like amphibious predator specializing on slow-moving tetrapod prey, and that it exploited a different lifestyle from that pursued by its contemporaries, the cochleosaurid Cochleosaurus, and the baphetids Baphetes and Megalocephalus. It was apparently rare in the fauna, with only eight fossils out of 700 from the Ný?any assemblage belonging to this taxon [the life restoration at the top of the article depicts Capetus. As is always the case with Palaeozoic tetrapods, life restorations of the animals being discussed here are few and far between (see previous lamentations on aetosaurs), so I had to resort to knocking one up myself. It's not bad, but it's not good either. Freely available for use, so long as Tet Zoo is credited].

i-0e0731d25510d33a69c1ea3831ddfbc9-Saharastega & Sidor.jpg

Among the most surprising of the basal temnospondyls is the recently described Saharastega moradiensis from Niger. The big deal is that – while Saharastega is apparently way down near the base of Temnospondyli (and hence close to the Carboniferous taxa Balanerpeton and Capetus) – is it from the Upper Permian Moradi Formation, and hence was very much a ‘late-survivor’, hanging on for long, long after other basal forms had bit the dust. As we saw in the edopoid article, the Moradi Formation seems to contain a strongly provincial, relictual fauna. Saharastega had a fairly nondescript, flattish and subtriangular skull with widely separated and laterally-facing orbits located close to the skull margins. The tabular horn – a pointed projection, growing from the tabular bone at the rear corner of the skull – was particularly odd in this taxon in being directed laterally, rather than posteriorly, and the jaw joint was positioned unusually anteriorly. These peculiarities suggest that Saharastega was doing something interesting, but we don’t know what that was. Although originally argued to belong to Edopoidea (Sidor et al. 2005), restudy has shown it to be outside of this clade (Steyer et al. 2006) [adjacent image shows Christian Sidor with Saharastega skull].

i-f90a796fa22a99d01e06830f91355580-Iberospondylus.jpg

Another basal temnospondyl, the Upper Carboniferous Spanish taxon Iberospondylus schultzei, is interesting in that it was discovered in sediments deposited in coastal marine waters (Laurin & Soler-Gijón 2001, 2006). In contrast to the taxa we’ve looked at so far, it possesses lateral line canals, and therefore was very likely to have been aquatic (though we’ll return later to how reliable lateral line canals are in demonstrating aquatic habits). Furthermore, the articulated condition of one of the specimens indicates that little post-mortem transport had occurred, so Iberospondylus was local to the environment in which it was preserved. It’s been known for some time that at least some temnospondyls were marine animals (and we’ll look at these other marine temnospondyls in a later post), but the basal position of Iberospondylus within temnospondyl phylogeny suggests that members of the group were able to inhabit the marine environment very early on in the group’s history. As Laurin & Soler-Gijón (2001) argued, there are indications that this might have been true of even more basal tetrapods: if so, this would explain how Devonian tetrapods became near-globally distributed so early on in their evolution [Iberospondylus skull shown in adjacent image].

This ends our look at the most basal members of Temnospondyli – or, at least, it does according to the phylogenetic schemes I’ve decided to follow. You will note that at least some of these animals, including the edopoids, Dendrerpeton and Balanerpeton, were apparently terrestrial or mostly terrestrial. It is inferred that a total length of perhaps 40 cm or so was primitive for the group, but a size of 1.5 m or more was evolved within Edopoidea, and also exhibited by broad-skulled Capetus. Some basal temnospondyls were aquatic, and even marine, and some hung on until as late as the Late Permian: about 40 million years longer than we’d thought prior to 2005.

Later, more ‘advanced’ temnospondyls can be imagined to form a ‘higher temnospondyl’ clade and, when we come back to temnospondyls in the future, it’s members of this group that we’ll be looking at.

Refs – -

Falcon-Lang, H. J. 1999. Fire ecology of a Late Carboniferous floodplain, Joggins, Nova Scotia. Journal of the Geological Society, London 156, 137-148.

Holmes, R. B., Carroll, R. L. & Reisz, R. R. 1998. The first articulated skeleton of Dendrerpeton acadianum (Temnospondyli, Dendrerpetontidae) from the lower Pennsylvanian locality of Joggins, Nova Scotia, and a review of its relationships. Journal of Vertebrate Paleontology 18, 64-79.

Laurin, M. & Soler-Gijón, R. 2001. The oldest stegocephalian from the Iberian Peninsula: evidence that temnospondyls were euryhaline. Comptes Rendu de l’Academie des Sciences Paris, Science de la vie 324, 495-501.

- . & Soler-Gijón, R. 2006. The oldest known stegocephalian (Sarcopterygii: Temnospondyli) from Spain. Journal of Vertebrate Paleontology 26, 284-299.

Milner, A. R. 1996. A revision of the temnospondyl amphibians from the Upper Carboniferous of Joggins, Nova Scotia. Special Papers in Palaeontology 52, 81-103.

- . & Sequeira, S. E. K. 1994. The temnospondyl amphibians from the Visean of East Kirkton, West Lothian, Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences 84, 331-361.

- . & Sequeira, S. E. K. 1998. A cochleosaurid temnospondyl amphibian from the Middle Pennsylvanian of Linton, Ohio, U.S.A. Zoological Journal of the Linnean Society 122, 261-290.

Robinson, J., Ahlberg, P. E. & Koentges, G. 2005. The braincase and middle ear region of Dendrerpeton acadianum (Tetrapoda: Temnospondyli). Zoological Journal of the Linnean Society 143, 577-597.

Ruta, M., Coates, M. I. & Quicke, D. L. J. 2003a. Early tetrapod relationships revisited. Biological Reviews 78, 251-345.

- ., Jeffery, J. & Coates, M. I. 2003b. A supertree of early tetrapods. Proceedings of the Royal Society of London B 270, 2507-2516.

Scott, A. C. 2001. Roasted alive in the Carboniferous. Geoscientist 11 (3), 4-7.

Sequeira, S. E. K. & Milner, A. R. 1993. The temnospondyl amphibian Capetus from the Upper Carboniferous of the Czech Republic. Palaeontology 36, 657-680.

Sidor, C. A., O’Keefe, F. R., Damiani, R., Steyer, J. S., Smith, R. M. H., Larsson, H. C. E., Sereno, P. C., Ide, O. & Maga, A. 2005. Permian tetrapods from the Sahara show climate-controlled endemism in Pangaea. Nature 434, 886-889.

Steyer, J. S., Damiani, R., Sidor, C. A., O’Keefe, R., Larsson, H. C. E., Maga, A. & Ide, O. 2006. The vertebrate fauna of the Upper Permian of Niger. IV. Nigerpeton ricqlesi (Temnospondyli: Cochleosauridae), and the edopoid colonization of Gondwana. Journal of Vertebrate Paleontology 26, 18-28.

Comments

  1. #1 Adam
    July 9, 2007

    Ahh, I was wondering why Saharastega did not feature in the edopoid post. It is a most puzzling creature indeed. Personally, and with all due respect to Seb Steyer and Ross Damiani, who are both colleagues and good friends, I doubt that it is a temnospondyl at all. Those laterally directed, downturned, deep tabular horns are strongly reminiscent of another Palaeozoic an-amniote. As indeed are the lateral placed eyes and the hugely broad interorbital skull roof and the supraoccipital bone. I speak of Seymouria, one of the few Palaeozoic an-amniotes to actually feature regularly in popular literature. Saharastega does have the typical temno-like interpterygoid vacuities but so does the russian seymouriamorph Kotlassia. So i think (like Nigerpeton) Saharastega may be a late-surviving southern extension of an otherwise early Permian Laurasian group. I wonder others think.

    cheers

    Adam

  2. #2 Greg Morrow
    July 9, 2007

    From this site:

    Ř ? Latin Capital Letter R With Caron (Capital R Hacek)
    ř ? Latin Small Letter R With Caron (Small R Hacek)

  3. #3 David Marjanović
    July 9, 2007

    Just a few notes…

    - There is no point in citing Ruta et al. (2003b): it’s a supertree, it doesn’t tell us anything new. Have you seen their 2007 paper, though?
    - Thus spake the mighty Robert L. Carroll in 1964 (p. 187): “Dissorophus multicinctus [an Early Permian terrestrial temnospondyl] has the parasphenoid partially fused to the base of the stapes. This situation also prevails in Eryops and Edops.” Fused! :-o Deaf as a salamander, I say — and that without the unique and deeply bizarre “otic flange” of Iberospondylus that closes the otic/spiracular channel.
    - The point of Laurin & Soler-Gijón is that intolerance of saltwater is a unique derived feature of Lissamphibia (or some larger clade), while tolerance (as seen in amniotes, temnospondyls, and Tulerpeton, and probably Ichthyostega also) is normal. Traditionally temnospondyls and everything else since the origin of digits were usually considered freshwater animals because “they were amphibians”, to the point that sometimes accompanying fauna like xenacanthids was considered to have lived in freshwater simply because temnospondyls were found at the same site.
    - If Capetus was an alligator-like predator, why does it lack lateral-line canals? The crocodiles have gone to the trouble of evolving their own analogous organs. Surprising as it is (in the presence of the more likely terrestrial near-amniote Solenodonsaurus), Capetus must have been more terrestrial than that, or I have overlooked something big… It doesn’t happen to have an unusually smooth skull, does it?
    - HTML code? Can you input the Unicode number instead? Test:
    Å™ (copied from the Windows character table)
    &U+0159; (Unicode number between HTML symbols)
    I wrote this post after changing the coding in which I viewed the webpage to “Unicode (UTF-8)”.
    - Baphetes, and Sequeira 1994. :-]

  4. #4 Sean Craven
    July 9, 2007

    Okay, so if you put a modern amphibian into salt water osmosis will dry the poor critter out, causing a painful death. Was there enough of a difference in ocean salinity to account for ancient marine amphibians, or is it more likely that they had adaptations that allowed them to absorb water and shed salt?

  5. #5 Darren Naish
    July 9, 2007

    Thanks Greg and Dave. Do you think other scienceblogs enjoy peer review? :)

    The alligator analogy for Capetus was based on skull shape I think. Note that the Capetus in my crappy drawing is doing its hunting on land. It doesn’t have smooth skull bones, but strongly sculpted ones. Well said on stapes anatomy and saltwater tolerance. Note that even lissamphibians aren’t as saltwater intolerant as you might think – there being at least some anurans that frequent, and breed in, brackish water. Large Bufo toads that live on beaches have been reported to swim in the sea. Plus anuran phylogeny shows us that even lissamphibians have made multiple over-water dispersals in their history (by rafting, not swimming of course).

    And why did I cite supertree studies? Because I choose to, Agent Smith.

  6. #6 Darren Naish
    July 9, 2007

    Only just saw Adam’s post (went into the junk folder for the usual mysterious/unknown reason). Wow.. or, yikes – surely not. That is interesting – unfortunately we only have their brief Nature paper to go on right? Steyer et al. (2006) refer to a ‘Damiani et al. in press’ JVP paper that monographs Saharastega: I haven’t yet seen this, does anyone know if it’s out? I don’t know as the last two issues of JVP have yet to arrive here at Tet Zoo towers (and yes, I have made inquiries about this).

  7. #7 David Marjanovi?
    July 9, 2007

    Ross Damiani, Christian A. Sidor, J. Sébastien Steyer, Roger M. H. Smith, Hans C. E. Larsson, Abdoulaye Maga, and Oumarou Ide: The vertebrate fauna of the Upper Permian of Niger. V. The primitive temnospondyl Saharastega moradiensis, JVP 26(3), 559 — 572 (11 September 2006)

    Abstract:
    “The skulll of the temnospondyl amphibian Saharastega moradiensis, from the Upper Permian Moradi Formation (Izégouandane Group, Izégouandane Basin) of northwestern Niger, is described in detail. Saharastega moradiensis is the most primitive known temnospondyl from Gondwana and possesses a combination of plesiomorphic and apomorphic character states, which suggest affinities with the Edopoidea, a clade of basal temnospondyls from the Upper Carboniferous and Lower Permian of Euramerica. These include the exclusion of the lacrimal from the orbital margin, the exclusion of the vomers and palatines from the interpterygoid vacuities, and the presence of an intertemporal ossification. Autapomorphies of the new taxon include the presence of narrow and elongated, transversely oriented nostrils; an extensive tongue-and-groove contact between the premaxillae and maxillae; tabulars that possess exceptionally large, laterally and ventrally directed ‘horns’; and an extraordinary ‘occipital plate’ that may be formed, at least in part, by a supraoccipital ossification. A phylogenetic analysis of select Paleozoic temnospondyls indicates that S. moradiensis is the sister taxon to the edopoids, represented in this analysis by Chenoprosopus and Edops. This suggests that S. moradiensis represents a late-surviving member of a clade that is the sister group [sic] of the Edopoidea. Members of this clade may have been restricted to equatorial northwest Africa during the Late Carboniferous and Early Permian, an area that was not affected by the extensive glaciation that covered much of southern Pangea.”

    The outgroups are Greererpeton and Proterogyrinus; the ingroup consists only of temnospondyls.

    I get JVP about a month after it appears, and the Austrian mail is extremely slow…

  8. #8 David Marjanović
    July 9, 2007

    I wrote:

    Å™ (copied from the Windows character table)

    This displays correctly when I view the page as Unicode, but not when I view it as “Western European (ISO-8859-1)”.

    Oddly, Greg Morrow’s post displays correctly both ways.

  9. #9 Mike
    July 9, 2007

    Darren: Your Capetus is pretty good as it manages to look like an entirely plausible animal that doesn’t seems off balance or otherwise just plopped on the page.

    I may not know temnospondyls by I know what I like.

  10. #10 Mickey Mortimer
    July 10, 2007

    Hey, it’s my old boss Chris Sidor! He should be back from Tanzania tomorrow. I remember seeing the Saharastega holotype in a drawer when I was inventorying. Not being a theropod, it couldn’t get me _too_ excited… ;)

The site is currently under maintenance and will be back shortly. New comments have been disabled during this time, please check back soon.