numbers https://scienceblogs.com/ en The Surprises Never Eend: The Ulam Spiral of Primes https://scienceblogs.com/goodmath/2010/06/22/the-surprises-never-eend-the-u <span>The Surprises Never Eend: The Ulam Spiral of Primes</span> <div class="field field--name-body field--type-text-with-summary field--label-hidden field--item"><p> One of the things that's endlessly fascinating to me about math and<br /> science is the way that, no matter how much we know, we're constantly<br /> discovering more things that we <em>don't</em> know. Even in simple, fundamental<br /> areas, there's always a surprise waiting just around the corner.</p> <p> A great example of this is something called the <em>Ulam spiral</em>,<br /> named after Stanislaw Ulam, who first noticed it. Take a sheet of graph paper.<br /> Put "1" in some square. Then, spiral out from there, putting one number in<br /> each square. Then circle each of the prime numbers. Like the following:</p> <p><img src="http://scienceblogs.com/goodmath/wp-content/blogs.dir/476/files/2012/04/i-0afef8236fdd3fea23fbcfb35f81eeb6-ulam.png" alt="i-0afef8236fdd3fea23fbcfb35f81eeb6-ulam.png" /></p> <p> If you do that for a while - and zoom out, so that you can't see the numbers,<br /> but just dots for each circled number, what you'll get will look something like<br /> this:</p> <p><img src="http://scienceblogs.com/goodmath/wp-content/blogs.dir/476/files/2012/04/i-aa21847004619e9491df4d005b0ce86c-ulam200.png" alt="i-aa21847004619e9491df4d005b0ce86c-ulam200.png" /></p> <p> That's the Ulam spiral filling a 200x200 grid. Look at how many diagonal<br /> line segments you get! And look how many diagonal line segments occur along<br /> the same lines! Why do the prime numbers tend to occur in clusters<br /> along the diagonals of this spiral? I don't have a clue. Nor, to my knowledge,<br /> does anyone else! </p> <p> And it gets even a bit more surprising: you don't need to start<br /> the spiral with one. You can start it with one hundred, or seventeen thousand. If<br /> you draw the spiral, you'll find primes along diagonals.</p> <p> Intuitions about it are almost certainly wrong. For example, when I first<br /> thought about it, I tried to find a numerical pattern around the diagonals.<br /> There are lots of patterns. For example, one of the simplest ones is<br /> that an awful lot of primes occur along the set of lines<br /> f(n) = 4n<sup>2</sup>+n+c, for a variety of values of b and c. But what does<br /> that tell you? Alas, not much. <em>Why</em> do so many primes occur along<br /> those families of lines?</p> <p> You can make the effect even more prominent by making the spiral<br /> a bit more regular. Instead of graph paper, draw an archimedean spiral - that<br /> is, the classic circular spiral path. Each revolution around the circle, evenly<br /> distribute the numbers up to the next perfect square. So the first spiral will have 2, 3, 4;<br /> the next will have 5, 6, 7, 8, 9. And so on. What you'll wind up with is<br /> called the <em>Sack's spiral</em>, which looks like this:</p> <p><img src="http://scienceblogs.com/goodmath/wp-content/blogs.dir/476/files/2012/04/i-8e4cdfc0a83e388851408bd4b44fd1e4-Sacks spiral.png" alt="i-8e4cdfc0a83e388851408bd4b44fd1e4-Sacks spiral.png" /></p> <p> This has been cited by some religious folks as being a proof of the<br /> existence of God. Personally, I think that that's silly; my personal<br /> belief is that even a deity can't change the way the numbers work: the<br /> nature of the numbers and how they behave in inescapable. Even a deity who<br /> could create the universe couldn't make 4 a prime number.</p> <p> Even just working with simple integers, and as simple a concept of<br /> the prime numbers, there are still surprises waiting for us.</p> </div> <span><a title="View user profile." href="/goodmath" lang="" about="/goodmath" typeof="schema:Person" property="schema:name" datatype="">goodmath</a></span> <span>Tue, 06/22/2010 - 05:58</span> <div class="field field--name-field-blog-tags field--type-entity-reference field--label-inline"> <div class="field--label">Tags</div> <div class="field--items"> <div class="field--item"><a href="/tag/goodmath" hreflang="en">goodmath</a></div> <div class="field--item"><a href="/tag/numbers" hreflang="en">numbers</a></div> </div> </div> <section> <article data-comment-user-id="0" id="comment-2128981" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1277202515"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>It'd be interesting to see these graphs with a color gradient varying with number of divisors instead of just black for two divisors (prime) and white for more than two. I wonder what kind of patterns would emerge.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2128981&amp;1=default&amp;2=en&amp;3=" token="vO7KCcQruTv66-b5qpu-V0g4Au2q6upVQsJe2pNHQqo"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">BenE (not verified)</span> on 22 Jun 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2128981">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2128982" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1277202930"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>We did some Ulam spiral visualizations recently. Check them out at:</p> <p> <a href="http://blog.morphism.com/2010/05/building-numbers.html">http://blog.morphism.com/2010/05/building-numbers.html</a></p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2128982&amp;1=default&amp;2=en&amp;3=" token="hN-DqYTYyjzkn7Bt1rtFSUIOceDhc0zF2nrKOQmJAVk"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://blog.morphism.com/" lang="" typeof="schema:Person" property="schema:name" datatype="">Anonymous (not verified)</a> on 22 Jun 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2128982">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2128983" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1277203397"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>I assume the fact that the squares all extend on two diagonals coming out from center is completely unsurprising given that squares are represented by x[n] = x[n-1] + 2n - 1 -- or also x[n] = x[n-2] + 4(n-1)</p> <p>I also did a quick check to see if it was simple pareidolia by generating a 200x200 grid with 4203 random dots in it (or rather, each of the 40000 pixels having a 4203/40000 chance of having a dot) - because according to Wolfram Alpha there are 4203 primes less than 40000 (<a href="http://www.wolframalpha.com/input/?i=primes+less+than+40000">http://www.wolframalpha.com/input/?i=primes+less+than+40000</a>).</p> <p>But several runs provided nothing like those hard diagonal lines. It all just looked (unsurprisingly) like noise.</p> <p>At least you got me thinking...</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2128983&amp;1=default&amp;2=en&amp;3=" token="mr9uiY6u8IM_3kJDTGXhffnuOIGECC-syoWXw_ITwQ8"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://sciencebasedparenting.com" lang="" typeof="schema:Person" property="schema:name" datatype="">Rob T. (not verified)</a> on 22 Jun 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2128983">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2128984" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1277203891"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Is the clustering all that surprising? The primes will need to be on diagonals because that is where you find the odd numbers. What happens when you randomly distribute a similar number of points on the odd numbers using a distribution that mimics the density of the primes (approximate Ï(x))?</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2128984&amp;1=default&amp;2=en&amp;3=" token="LWcFAUL_WJgptF6Gw6UKVEtvQoQ2eZ55yD8pJ6gPp0c"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Jeff Alexander (not verified)</span> on 22 Jun 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2128984">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2128985" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1277203968"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Well, the Sack's spiral looks like the Death Star, perhaps this is a proof of the existence of the Dark Side of the Force??</p> <p>:)</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2128985&amp;1=default&amp;2=en&amp;3=" token="13ZUS3CZR0YFwme5LoOcoAACP1hN1VeQS7vpUVUhbXg"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://www.lnds.net" lang="" typeof="schema:Person" property="schema:name" datatype="">Eduardo Diaz (not verified)</a> on 22 Jun 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2128985">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2128986" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1277204174"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>The intuition that occurred to Jeff @4 also occurred to me. Do interesting patterns show up if you plot only odd numbers?</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2128986&amp;1=default&amp;2=en&amp;3=" token="Ui5GtaEYWB1BbHwxaOnbNGeLIeIcCVKbhc9DG2yGBbc"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://blog.notdot.net/" lang="" typeof="schema:Person" property="schema:name" datatype="">Nick Johnson (not verified)</a> on 22 Jun 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2128986">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2128987" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1277204884"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>I've seen the Ulam spiral before and the first time I saw it the first thing I asked was whether the diagonal lines were the level you'd expect from a reasonably random model. I've never got an answer, at some point when I have free time I intend to do the obvious thing and make some spirals which have points colored in with probability 1/ log n and see how visually similar they look. If there's a real phenomenon going on here they should look different in a very obvious way.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2128987&amp;1=default&amp;2=en&amp;3=" token="vWJpVqlLjpnUCaqkkEH_k0VccUFbviCqxu7sqsAt9iM"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://religionsetspolitics.blogspot.com/" lang="" typeof="schema:Person" property="schema:name" datatype="">Joshua Zelinsky (not verified)</a> on 22 Jun 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2128987">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2128988" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1277205662"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>I wrote a program a few days ago that made Ulam spirals, they make pretty desktop backgrounds. :3</p> <p>This is my current: <a href="http://img529.imageshack.us/img529/615/ulam3.png">http://img529.imageshack.us/img529/615/ulam3.png</a></p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2128988&amp;1=default&amp;2=en&amp;3=" token="7pTVzS1FpSrSBsyMXQZHUF25ZstBv_G_E4GaTOjaI80"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Thasc (not verified)</span> on 22 Jun 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2128988">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2128989" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1277206434"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>You could possibly also try plotting on a fibbonacci type of spiral</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2128989&amp;1=default&amp;2=en&amp;3=" token="9aucHvsvZJpejw46tSOc70--sC-SwpgmIw24-zrWn-g"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://Gilbazoid.wordpress.com" lang="" typeof="schema:Person" property="schema:name" datatype="">Gilbert Bernstein (not verified)</a> on 22 Jun 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2128989">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2128990" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1277208359"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>@nick and @jeff coloring in all odd numbers would only give you a uniform grey shading. Not a spiral. </p> <p>Don't believe me? Try it.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2128990&amp;1=default&amp;2=en&amp;3=" token="tItTXCHN7NjzwDGpABad3FYBI1_AwoF9cQ1F5BSSYEg"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Maht Gut (not verified)</span> on 22 Jun 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2128990">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="138" id="comment-2128991" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1277208566"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>This is a surprisingly robust process. You can try a lot of naive approaches - like shading in random numbers with the same probability distribution as the primes; or shading various odds - you'll either get an extremely strong pattern (like a uniform grey for all odd numbers, or a cross-hatch far various determinstic subsets of the odds), but this scattershot process with a high-level uniformity? It's really hard to design some kind of set that produces a pattern like this. That's part of what makes it so damned fascinating. You can create things with much more structure, and you can create things with much less structure - but finding something that's got this kind of structure to it is really surprisingly difficult.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2128991&amp;1=default&amp;2=en&amp;3=" token="DOHtDR6uf4vehnxYutWkl_DW9wahQni_pjTjxkSEx5A"></drupal-render-placeholder> </div> <footer> <em>By <a title="View user profile." href="/goodmath" lang="" about="/goodmath" typeof="schema:Person" property="schema:name" datatype="">goodmath</a> on 22 Jun 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2128991">#permalink</a></em> <article typeof="schema:Person" about="/goodmath"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/goodmath" hreflang="en"><img src="/files/styles/thumbnail/public/pictures/markcc.jpg?itok=PmLQEFZp" width="92" height="100" alt="Profile picture for user goodmath" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2128992" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1277208881"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>if you draw primes in circles an the distribution of primes is somehow related with pi, some kinds of patterns should occur, right? But you're: It's fascinating. Again and again and again. If you love mathematics, you'll never be bored;-)<br /> Thanx for this nice post.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2128992&amp;1=default&amp;2=en&amp;3=" token="sUGBcTPHX50fKdp-vJL8HLADDzJrdSa-IIeL4I-uagI"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Stefan Keller (not verified)</span> on 22 Jun 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2128992">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2128993" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1277208959"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>@Maht #10: I wasn't suggesting coloring all the odd numbers - I was suggesting plotting a Ulam spiral that only includes odd numbers, then coloring the primes.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2128993&amp;1=default&amp;2=en&amp;3=" token="U11z9ZGwAh6KhDqvM9Sc_eNfAFHswZ3E0noeMBUn1PE"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://blog.notdot.net/" lang="" typeof="schema:Person" property="schema:name" datatype="">Nick Johnson (not verified)</a> on 22 Jun 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2128993">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2128994" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1277209424"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>@Nick #13 Just coded that, exhibits similar diagonal patterns to the normal Ulam spiral.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2128994&amp;1=default&amp;2=en&amp;3=" token="lWJ9q3tO5nwfFgALkcFnMeJhzp3s0JVdmlo50NUldPw"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Thasc (not verified)</span> on 22 Jun 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2128994">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2128995" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1277209425"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>...now I want to plot it on a hex grid...</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2128995&amp;1=default&amp;2=en&amp;3=" token="oM0B8wPZIVqAw5btXduBtyIgoVKHy8QF7ZneN7IMzUA"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://sciencebasedparenting.com" lang="" typeof="schema:Person" property="schema:name" datatype="">Rob T. (not verified)</a> on 22 Jun 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2128995">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="138" id="comment-2128996" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1277209528"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>#14, and others:</p> <p>If you produce any interesting variants, I'd love to link to them. If you don't have a place to host the image, just email it to me, and I'll host it at SB.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2128996&amp;1=default&amp;2=en&amp;3=" token="7Us9e1eNvhTKvq9y4d_NnrpVbtz07PZ1qau1DtGp-Hc"></drupal-render-placeholder> </div> <footer> <em>By <a title="View user profile." href="/goodmath" lang="" about="/goodmath" typeof="schema:Person" property="schema:name" datatype="">goodmath</a> on 22 Jun 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2128996">#permalink</a></em> <article typeof="schema:Person" about="/goodmath"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/goodmath" hreflang="en"><img src="/files/styles/thumbnail/public/pictures/markcc.jpg?itok=PmLQEFZp" width="92" height="100" alt="Profile picture for user goodmath" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2128997" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1277209542"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>@Thasc #14 Nice! Thanks for trying it out.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2128997&amp;1=default&amp;2=en&amp;3=" token="0YpyJo4SOy8SKB4api8sHKYltAstip9WEnXeUyK9F44"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://blog.notdot.net/" lang="" typeof="schema:Person" property="schema:name" datatype="">Nick Johnson (not verified)</a> on 22 Jun 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2128997">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2128998" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1277209728"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><blockquote><p>This has been cited by some religious folks as being a proof of the existence of God. Personally, I think that that's silly; my personal belief is that even a deity can't change the way the numbers work: the nature of the numbers and how they behave in inescapable. Even a deity who could create the universe couldn't make 4 a prime number.</p></blockquote> <p>Additionally, it's not actually an argument for God's existence so much as somebody going "Oooh, something neat was discovered! Quick, attribute it to God!"</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2128998&amp;1=default&amp;2=en&amp;3=" token="qC70y-GjnjvXo0L_KYN-rV_XQ8NjindAKCfpqkhpiUQ"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Anonymous (not verified)</span> on 22 Jun 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2128998">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2128999" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1277209820"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Oh, good.. Someone already has...</p> <p><a href="http://mathworld.wolfram.com/PrimeSpiral.html">http://mathworld.wolfram.com/PrimeSpiral.html</a></p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2128999&amp;1=default&amp;2=en&amp;3=" token="PaVr4rCsDrdUkwbXdnASpCCQlWBbBjeVe_pvGyugdSs"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://sciencebasedparenting.com" lang="" typeof="schema:Person" property="schema:name" datatype="">Rob T. (not verified)</a> on 22 Jun 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2128999">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2129000" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1277210625"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>A month back I made a big PDF of the Ulam spiral that one can download at <a href="http://imprompt.us/2010/ulam-spiral-take-2/">http://imprompt.us/2010/ulam-spiral-take-2/</a></p> <p>It prints out quite nicely on a 24" roll-fed printer.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2129000&amp;1=default&amp;2=en&amp;3=" token="kvBCjc5REYrCkPd211HnsU_BrRkqkIJ4F9CPAQomyBs"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://imprompt.us" lang="" typeof="schema:Person" property="schema:name" datatype="">Peter Boothe (not verified)</a> on 22 Jun 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2129000">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2129001" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1277210729"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>#2<br /> Did you try only having random odd numbers generated (dots in a checkerboard pattern)?</p> <p>Also, there's a typo in the title.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2129001&amp;1=default&amp;2=en&amp;3=" token="D9z_w_r9HJFfDi1wWV25q-48jKBepZmASAA_Vz-f4y8"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Shanquanzekye (not verified)</span> on 22 Jun 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2129001">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2129002" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1277210805"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>I am wondering how it would be extended to higher dimensions. Instead of following a curves, we may define a way to fill a surface.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2129002&amp;1=default&amp;2=en&amp;3=" token="MwXCxPjA41QbZhGBZgJF0qbKCGiExDKIsHiYPBj6Nz8"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://sologen.tumblr.com/" lang="" typeof="schema:Person" property="schema:name" datatype="">SoloGen (not verified)</a> on 22 Jun 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2129002">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2129003" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1277211212"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>It's actually the <i>Sacks</i> spiral, not <i>Sack's</i>. It was discovered by Robert Sacks.<br /> I came across Ulam's spiral when I was looking up some things about Ulam's cellular automata, but I hadn't seen Sacks' variant. Pretty neat.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2129003&amp;1=default&amp;2=en&amp;3=" token="r7d_iWo1D05FDF1jZH8uaSL56GsKVphwI94qskceoNU"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://cairnarvon.rotahall.org/" lang="" typeof="schema:Person" property="schema:name" datatype="">Cairnarvon (not verified)</a> on 22 Jun 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2129003">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2129004" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1277212152"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Something similar that I find even more intriguing is the following construction: For some natural numbers D and N, take all polynomials of degree less than or equal to D, with nonzero integer coefficients from the range -N to N, inclusive. Find all complex roots for the set of polynomials, then plot the density of roots on the complex plane. The resulting plot will look roughly similar for most choices of D and N, with increasing detail for larger values of D. Any guess what it ends up looking like?</p> <p>Well, <a href="http://math.ucr.edu/home/baez/roots/polynomialrootssmall.png">here's what you get for D = 24, N = 1</a>. Anyone got an explanation for <i>that</i>?</p> <p>For further details (and proper credit for the previous image), see <a href="http://math.ucr.edu/home/baez/roots/">this page about plots of polynomial roots</a>.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2129004&amp;1=default&amp;2=en&amp;3=" token="t1TaGSdkK9EjGBinpjYLzCfTK-LNnXs2xyrhpy2LnVI"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">a soulless automaton (not verified)</span> on 22 Jun 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2129004">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2129005" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1277212271"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Plotted on a triangle:</p> <p>1<br /> 2 3<br /> 4 5 6<br /> 7 8 9 10 ...</p> <p><a href="http://rob.tarrfamily.com/share/Triangle.gif">http://rob.tarrfamily.com/share/Triangle.gif</a></p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2129005&amp;1=default&amp;2=en&amp;3=" token="rgstcPQ25bPVdnNov1z9TS5Uq11c7Zcv-F-U4A9IhMo"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://sciencebasedparenting.com" lang="" typeof="schema:Person" property="schema:name" datatype="">Rob T. (not verified)</a> on 22 Jun 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2129005">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2129006" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1277215871"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>How about this:</p> <p>1) Consider a series of squares formed by a series of uniform steps that doesn't cross a diagonal. The nth square will have a value determined by a quadratic polynomial in n.</p> <p>2) IIRC, for an odd prime p, a quadratic polynomial with integer coefficents whose n^2 coefficient does not vanish mod p will have (p+1)/2 residues mod p and (p-1)/2 nonresidues mod p.</p> <p>3) Diagonal sequences will be all even or all odd.</p> <p>In short, polynomial sequences will tend to be streakier with respect to primes.</p> <p>For example, Euler's prime-generating polynomial n^2+n+41 is never divisible by any prime less than 41, and probably has average luck with respect to the higher primes.</p> <p>By contrast, n^2+n+43 is average wrt. 3, and is worse than average wrt. 5, 7, and 11 (2 out of 5 are divisible by 5, 2 out of 7 are divisible by 7, and 2 out of 11 are divisible by 11).</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2129006&amp;1=default&amp;2=en&amp;3=" token="54Pn9KalKtaSvudzPDUqqXTEISRxDSWEUwsFsXMEV70"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Anonymous (not verified)</span> on 22 Jun 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2129006">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2129007" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1277216714"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>This may not show that God exists, but I'm starting to wonder about the devil ;-)</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2129007&amp;1=default&amp;2=en&amp;3=" token="G3hNowebyU-P4GwRjsuOKJqjkyOS4S6jtc9nPmlS108"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">woupiestek (not verified)</span> on 22 Jun 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2129007">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2129008" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1277221403"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Elaboration on #26:</p> <p>Define the luck of a sequence (mod p), where p is prime, as:<br /> - "perfect luck" if no member is divisible by p<br /> - "average luck" if 1/p members are divisible by p<br /> - "poor luck" if 2/p members are divisible by p<br /> - "no luck" if every member is divisible by p</p> <p>(Ignoring the edge case of when p itself appears in the sequence (which will happen at most finitely many times for polynomial sequences), unlucky sequences have fewer primes than usual, and lucky sequences have more primes than usual.)</p> <p>The luck of a quadratic sequence a_n := Ann + Bn + C mod p will be:</p> <p>: For p = 2<br /> :: A != B (mod 2) -&gt; average luck<br /> :: A == B (mod 2), C == 0 (mod 2) -&gt; no luck<br /> :: A == B (mod 2), C == 1 (mod 2) -&gt; perfect luck</p> <p>: For p = 2k+1<br /> :: A != 0 (mod p)<br /> ::: Set d := C % p.<br /> ::: For 1 value of d, the series has average luck; for k values of d, the series has poor luck; for k values of d, the series has perfect luck.<br /> :: A == 0 (mod p), B != 0 (mod p) -&gt; average luck<br /> :: A == 0 (mod p), B == 0 (mod p), C == 0 (mod p) -&gt; perfect luck</p> <p>(Well established results in number theory; search for quadratic residues if you want proofs.)</p> <p>Fix A and B with A+B even.</p> <p>There will be 1 way to choose C (mod 2) so that the sequence has perfect luck mod 2, 1 way to choose C (mod 3) so it has perfect luck mod 3, 2 ways to choose C (mod 5) so it has perfect luck mod 5, and so on. (Exceptions when p is an odd prime dividing A.)</p> <p>By the Chinese remainder theorem, it is possible to choose C so that the sequence has perfect luck for an arbitrary number of primes.</p> <p>If a sequence has perfect luck for a number of small primes, members are significantly more likely to be prime, even if the sequence has poor luck with later primes. A random integer will 12% chance of having no prime factor &lt; 100. A random integer with perfect luck for primes 2 through 37, but poor &amp; independent luck for primes 41 through 97 has a 65% chance of having no prime factor &lt; 100.</p> <p>And as it happens, diagonals on the spiral are generated by 4NN + 2mN + C, which will have the desired feast/famine properties.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2129008&amp;1=default&amp;2=en&amp;3=" token="IJ9mYkVJgRvZ6ehFg835N3xEpkz8hVwd7_WySogX0GI"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">ralphmerridew (not verified)</span> on 22 Jun 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2129008">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2129009" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1277223702"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>I think you found your book jacket illustration, Mark.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2129009&amp;1=default&amp;2=en&amp;3=" token="EhfCerX922KyeoYImejOKI5Wvuv9UEnp2FUoFCRcQ0Q"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">KeithB (not verified)</span> on 22 Jun 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2129009">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2129010" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1277233728"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>I'd like to see an animation of the sieve of erasothenes running against the numbers plotted out like this.</p> <p>Also - as I understand it, the density of the primes is approximately n/ln(n), right? So to plot out a spiral that has an even density of primes across its area, the radius at n should be not sqrt(n) - which gives you an even density for all nunmbers - but ... ?</p> <p>Actually, all things considered, sqrt(n) will be pretty good, because the rate at which the rate changes is much less than sqrt(n).</p> <p>Hmm. I feel an applet coming on ...</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2129010&amp;1=default&amp;2=en&amp;3=" token="fcPKalv5vJwfbrQ0tA7GyWUtKvvOFR9mcxf72b7Sis8"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://twitter.com/PaulMurrayCbr" lang="" typeof="schema:Person" property="schema:name" datatype="">Paul Murray (not verified)</a> on 22 Jun 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2129010">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2129011" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1277234358"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>#20,</p> <p>I totally was not expecting that PDF to <i>dynamically</i> generate the spiral. As the PDF loaded in the browser, I saw it growing from the center of the spiral out...</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2129011&amp;1=default&amp;2=en&amp;3=" token="-_ye7D_UkObaba5wxHnOgbncdfhibaGj4whpA0WCiqI"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Mystyk (not verified)</span> on 22 Jun 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2129011">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2129012" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1277235009"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Here's an idea, just an idea... In the diagram, lines of slope 2, 3 (or 1/2, 1/3) and higher (or lower) don't have as many points on them, period (much less primes). So any cluster of primes on those lines wouldn't be as dense as on the slope-1 and slope-minus 1 lines, so they wouldn't be as noticeable. -- I'm not sure that's the reason, but it did occur to me.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2129012&amp;1=default&amp;2=en&amp;3=" token="hxbKjI7o9IEBI-iOtyAOSfBz6l0axGyivEZHbeQ-9IE"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Marion D. Cohen (not verified)</span> on 22 Jun 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2129012">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2129013" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1277242022"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Well of course there are still surprises waiting for us. I mean you can interpret pretty much all mathematics as statements about the primes. </p> <p>Hell, we know that even the question of which Diophantine equations are solvable is non-computable and hence can't ever be fully characterized in a predicatively useful way.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2129013&amp;1=default&amp;2=en&amp;3=" token="WqZ4p6JqDR0IAAjRcj7qKxVX0n-NCCHOF-w5pAm9Bic"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://infiniteinjury.org/blog" lang="" typeof="schema:Person" property="schema:name" datatype="">Peter Gerdes (not verified)</a> on 22 Jun 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2129013">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2129014" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1277242584"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Working with the first 100K primes. </p> <p>To plot prime number n, theta = sqrt(n)*2pi, and r = sqrt(n) to give an even distribution of numbers across the disc, or r = sqrt(n / log(n)) to give an even distribution of primes across the disc.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2129014&amp;1=default&amp;2=en&amp;3=" token="YEjqH7uD3P6uxSkMGdMiszPRphv-xwID8HlrqHoa-Ng"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://twitter.com/PaulMurrayCbr" lang="" typeof="schema:Person" property="schema:name" datatype="">Paul Murray (not verified)</a> on 22 Jun 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2129014">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2129015" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1277259702"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>@32: Skewing the picture by a linear transformation would expose those lines, and it doesn't: if you use the transformation matrix ((1 1) (0 1)), you see dotted vertical lines and even hints of lines of slope 1/2, but no diagonals.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2129015&amp;1=default&amp;2=en&amp;3=" token="ByESN-HWD-zBwwjeXOXVrbyDfHqs3PcVKJoKlr4Ho0U"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Thorny (not verified)</span> on 22 Jun 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2129015">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2129016" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1277261048"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Dang, spoke too soon. Lines with slope 3 do actually show quite a bit, and even slopes can be seen if one wants to see them. I would guess that this just corresponds to forms 4n^2+2bn+c differing only by a constant from 2n(2n+b), which is likely to be divisible by all kinds of primes, so they "have a smaller chance" to be composite themselves. The same pattern is probably true for numbers of form 2n(n+1)(n+2)+c as well, it is just that they do not form an easily recognizable pattern on the spiral.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2129016&amp;1=default&amp;2=en&amp;3=" token="i6b-GTU8d2oVG7T7Y5BDJwtAyBhL8tOzvf2Pk7SVB-U"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Thorny (not verified)</span> on 22 Jun 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2129016">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2129017" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1277276751"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>hi . your math blog is very good . thanks .<br /> luck .<br /> my math blog is persian , whoes I link its translate .</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2129017&amp;1=default&amp;2=en&amp;3=" token="v8bp1myttyl1F5U4HTDYQzwyCmXkHuPxwK9x-t-uzuk"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://translate.google.com/translate?hl=fa&amp;sl=auto&amp;tl=en&amp;u=www.mathgroup.blogfa.com" lang="" typeof="schema:Person" property="schema:name" datatype="">novin (not verified)</a> on 23 Jun 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2129017">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="37" id="comment-2129018" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1277289014"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>I wonder what happens when you do a Sacks spiral with one revolution every odd perfect square? ie, 2 3 4 5 6 7 8 9 in the first circuit, 10-25 in the next circuit, etc. That would more closely match the Ulam spiral.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2129018&amp;1=default&amp;2=en&amp;3=" token="ptqPr60rS_QBrcn2B7k05r54XoNf0mDfEadxa8mXCfs"></drupal-render-placeholder> </div> <footer> <em>By <a title="View user profile." href="/author/kvicklund" lang="" about="/author/kvicklund" typeof="schema:Person" property="schema:name" datatype="">kvicklund</a> on 23 Jun 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2129018">#permalink</a></em> <article typeof="schema:Person" about="/author/kvicklund"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/author/kvicklund" hreflang="en"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2129019" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1277291888"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Multiples of many (all?) numbers form diagonal patterns. The spaces left will surely also form occasional diagonals, am i missing something or can it be that simple?</p> <p>Move a bishop around a chessboard a few times and record squares that haven't been crossed and you should see something similar.</p> <p>As Paul Murray said (30) I think an animation of the sieve would make this a little more clearer to see.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2129019&amp;1=default&amp;2=en&amp;3=" token="md_SDEPqXEHZmXvwks5Cr0PzgFg93b78-YMSa1EbGVs"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">John (not verified)</span> on 23 Jun 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2129019">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2129020" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1277306394"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>After seeing the Ulam and the Sacks spirals I had been playing with spirals and primes myself a while ago and came up with this:<br /> <a href="http://incubator.quasimondo.com/flash/wheel_of_primes.php">http://incubator.quasimondo.com/flash/wheel_of_primes.php</a></p> <p>I fear it's probably just a pretty picture that I got after exploring various spiral factors; still I was quite surprised when I hit on it.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2129020&amp;1=default&amp;2=en&amp;3=" token="dNRE_P7-fLjoZX_cOkcsbn4KWJ3YwJWcOwiY_9843tE"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://incubator.quasimondo.com/flash/wheel_of_primes.php" lang="" typeof="schema:Person" property="schema:name" datatype="">Mario Klingemann (not verified)</a> on 23 Jun 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2129020">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2129021" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1277308014"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Interesting post.</p> <blockquote><p>For example, one of the simplest ones is that an awful lot of primes occur along the set of lines f(n) = 4n2+n+c, for a variety of values of b and c.</p></blockquote> <p>Should that be f(n) = 4n2+bn+c?</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2129021&amp;1=default&amp;2=en&amp;3=" token="uGoPaVTSdtEWC_jgetJt8RqHjPQUbId3fQWAkdJ5Q0Y"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Feynmaniac (not verified)</span> on 23 Jun 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2129021">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2129022" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1277336591"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Reminds me of the plots of the large scale structure of the universe with boxes along lines and holes.</p> <p>I wonder how you could generalize the concept to 3D to get that kind of plot.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2129022&amp;1=default&amp;2=en&amp;3=" token="beZq7iFeAvqFe_7gTwJXzVJZ3NIy95SFrmAe-ZNrcNA"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://washparkprophet.blogspot.com" lang="" typeof="schema:Person" property="schema:name" datatype="">ohwilleke (not verified)</a> on 23 Jun 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2129022">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2129023" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1277435028"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>this is fascinating stuff. those patterns--so <i>close</i>, so tantalizingly close to looking like something predictable. amazing, thanks for sharing.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2129023&amp;1=default&amp;2=en&amp;3=" token="UjdxvYo5rifasNo0zUKGJyA3LImtFwHk0ZOBUY2FPaY"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://reasondecrystallized.blogspot.com/" lang="" typeof="schema:Person" property="schema:name" datatype="">andrew (not verified)</a> on 24 Jun 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2129023">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2129024" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1277549474"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>I don't know whether you read your comment threads in their entirety, but I'd be very interested to hear your thoughts about the following. You said: "Personally, I think that that's silly; my personal belief is that even a deity can't change the way the numbers work: the nature of the numbers and how they behave is inescapable. Even a deity who could create the universe couldn't make 4 a prime number." I agree that simply creating the physical universe doesn't mean you can change the behavior of numbers, which are "inescapable" in the sense that the laws of logic would not allow them to behave in any other way. In other words, the behavior of numbers are fixed as soon as the laws of logic are.</p> <p>But what if God created logic itself? It seems counterintuitive, but what if even the most basic axioms of logic, like "P implies P", were actually contingent upon God's will? In essence, what I'm claiming is that God "wrote" truth, in the sense that he chose which propositions are true and which aren't. And he wrote logic, in the sense that he chose how propositions logically followed from each other. So yes, I think God designed Sack's spiral.</p> <p>Remember, if your only response is that my world view, in which logic and mathematics could have been different from what they are, is logically impossible, then you've missed the point!</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2129024&amp;1=default&amp;2=en&amp;3=" token="lEYM8929j3DczuqAjvPNGMq_L5XVYzreKizqveUggWs"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Keshav Srinivasan (not verified)</span> on 26 Jun 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2129024">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="138" id="comment-2129025" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1277550232"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>@44:</p> <p>Logic isn't a single thing. It's a formal system, defined from abstract rules. First order predicate logic, which is the main logic we use in math, isn't part of the universe. It's an abstraction, defined by a system of rules.</p> <p>There are some things which are inevitably true. And no one and nothing can possibly get around that.</p> <p>God *can't* create a universe where "A ∧ ¬ A" is true in FOPL. Not because of any limit on the power of god, but because it's <em>meaningless</em>. FOPL is something specific, which has a set of rules that define it. You *can't* create a universe where those rules don't work - because they don't depend on the universe; they're pure abstraction. Within their system, the results that you can get from them are absolutely inevitable.</p> <p>Creating a "universe" where A ∧ ¬ A is true in FOPL is like creating a Universe<br /> where the universe doesn't exist. What does it mean to create a universe where the universe doesn't exist? It doesn't mean <em>anything</em>. It's a non-sensical phrase.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2129025&amp;1=default&amp;2=en&amp;3=" token="_8izkRkq8l1_6NGsELLKDDeC2T-YYbu5Fjzq6zUs6rA"></drupal-render-placeholder> </div> <footer> <em>By <a title="View user profile." href="/goodmath" lang="" about="/goodmath" typeof="schema:Person" property="schema:name" datatype="">goodmath</a> on 26 Jun 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2129025">#permalink</a></em> <article typeof="schema:Person" about="/goodmath"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/goodmath" hreflang="en"><img src="/files/styles/thumbnail/public/pictures/markcc.jpg?itok=PmLQEFZp" width="92" height="100" alt="Profile picture for user goodmath" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2129026" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1277564863"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>I agree that simply creating the physical universe doesn't mean you can change the behavior of numbers, which are "inescapable" in the sense that the laws of logic would not allow them to behave in any other way. In other words, the behavior of numbers are fixed as soon as the laws of logic are.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2129026&amp;1=default&amp;2=en&amp;3=" token="vhKPjawRwR3gulqKBR0IN_PX2zLns1fuO2HNLuZP_1U"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://www.redpepper.gen.tr" lang="" typeof="schema:Person" property="schema:name" datatype="">red pepper (not verified)</a> on 26 Jun 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2129026">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="138" id="comment-2129027" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1277565535"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>@46:</p> <p>Close, but you're still missing one absolutely crucial bit: the laws of logic are <em>arbitrary</em>. Logic isn't something that's defined by the physical properties of the universe. Logic is just a system for describing statements and inference rules. </p> <p>FOPL seems very natural to us - but that's mainly just because we've grown up using it. Even before we knew what formal logic was, we were learning things in terms of FOPL. But there's no reason that anyone <em>has</em> to use FOPL.</p> <p>To give an example of a different approach, many people argue that intuitionistic logic is preferable. But in first order intuitionist predicate logic, A&amp;lor;¬A is <em>not</em> necessarily true! </p> <p>Even a world creating deity couldn't make numbers work differently in FOPL.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2129027&amp;1=default&amp;2=en&amp;3=" token="_q5skNlZxYbk4mhgU1ovCUBytrFY7zlwvffw_jvC8yI"></drupal-render-placeholder> </div> <footer> <em>By <a title="View user profile." href="/goodmath" lang="" about="/goodmath" typeof="schema:Person" property="schema:name" datatype="">goodmath</a> on 26 Jun 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2129027">#permalink</a></em> <article typeof="schema:Person" about="/goodmath"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/goodmath" hreflang="en"><img src="/files/styles/thumbnail/public/pictures/markcc.jpg?itok=PmLQEFZp" width="92" height="100" alt="Profile picture for user goodmath" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2129028" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1277592569"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>a math animation blog</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2129028&amp;1=default&amp;2=en&amp;3=" token="tqvdERF_hgv5Z4GKco4aFLuMlS4Oya23xpqd59O9FJM"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://animateholic.wordpress.com/" lang="" typeof="schema:Person" property="schema:name" datatype="">animateholic (not verified)</a> on 26 Jun 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2129028">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2129029" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1277629232"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>@45 I'm sorry, but I don't think I was sufficiently clear. When I said that God created logic, I didn't just mean that God created formal logical systems, like First Order Logic or the Propositional Calculus. I meant that he created <i>logical consequence</i> itself. A formal system is just a set of axioms, which give you some theorems to start off with, and a set of inference rules, which tell you how to produce new theorems from old ones. But given the specification of a particular formal system, how do you actually conclude that something is a theorem? </p> <p>An axiom may be of the form A, and a rule of inference may be of the form "If A is a theorem, then B is a theorem." But then how do you actually conclude that B is a theorem? You need the logical principle that if P is true and P implies Q, then Q is true. Where does this logic come from? Of course, you can use an axiomatization of logic like the Propositional Calculus, but that too is a formal system, so you're just kicking the problem somewhere else. (If you want to read more about this, check out <a> this dialog</a> by Lewis Carrol.)</p> <p>My point is that there is something <i>pre-formal</i> called Logic. You can formalize things like logical consequence, but ultimately to even use formal systems you need the original pre-formal God-given notion. To respond to your example, it is indeed possible that God could have made "A &amp; not A" a theorem of first order logic, since he has full control over that pre-formal Logic we rely upon.</p> <p>Also, I don't understand why you think that "pure abstractions" are out of reach of God. I guess the issue boils down to what your philosophical views are. If you believe that truth, in particular mathematical truth, is just a subjective thing produced by the human brain, then all of this would be irrelevant, because the primeness of 4 would just be a matter of opinion. If, on the other hand, you believe as I do that mathematical truth is independent of human beliefs, then the question arises: where does mathematical truth come from? I think the only truly satisfactory answer is that something as absolute as Truth can only come from something as absolute as God.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2129029&amp;1=default&amp;2=en&amp;3=" token="cN5UFaKhq3hSpv_voOiRkAXb63wkbTJ-cD2L3AvaFN4"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Keshav Srinivasan (not verified)</span> on 27 Jun 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2129029">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2129030" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1277653422"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Did anybody notice my posts 26 &amp; 28? I gave an explanation why some diagonals are prime-rich. (Short version: Given a set S of primes and fixed A, B, with A+B even, it is possible to choose C so that An^2 + Bn + C is never divisible by any prime in S.)</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2129030&amp;1=default&amp;2=en&amp;3=" token="vSL5D9vcmhHFTo3piwRITn19GLTpYKbWeql60_FG03U"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">ralphmerridew (not verified)</span> on 27 Jun 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2129030">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2129031" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1277665217"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>@50</p> <p>I think your explanation gets to the heart of the matter. There is actually a long-standing conjecture about the density of primes in sequences generated by quadratic polynomials going back to Hardy and Littlewood from which one would be led to expect that some diagonals should have higher density than others. This is a generalization of their conjecture about the number of primes of the form n^2+1, and was in turn generalized to polynomials of arbitrary degree and to collections of polynomials by Bateman and Horn. I think the heuristic argument given by Bateman and Horn for their conjecture is quite similar to yours.</p> <p>It seems to be "common knowledge" that the the sharp diagonal lines in the Ulam spiral are an unexpected phenomenon. Where this "common knowledge" came from, I'm not sure, but I suspect that professional analytic number theorists do not share the surprise. I would be interested to hear opinions about this, one way or the other.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2129031&amp;1=default&amp;2=en&amp;3=" token="kZrx2gGLDRzoN6RHQuBmrOjKUAymBu9QqT4Cp6H-mQY"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://mypage.iu.edu/~worrick" lang="" typeof="schema:Person" property="schema:name" datatype="">Will Orrick (not verified)</a> on 27 Jun 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2129031">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2129032" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1277673008"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>@49 "To respond to your example, it is indeed possible that God could have made "A &amp; not A" a theorem of first order logic, since he has full control over that pre-formal Logic we rely upon."</p> <p>It's simply not possible for God or any being to have "control" over basic "laws" of logic (or rather, the referents thereof as the formalization is a human construction as Mark notes). Consider: it would have been impossible for God to instantiate the referent of the law of non-contradiction for that would necessitate that before He did so, He both existed and didn't exist. It would also necessitate that He could at any point revert reality to it's "pre" LoNC state. Which would of its own necessitate that He would both be able to do so and NOT be able to do so.</p> <p>TL;DR - grounding logic in God's will yields incoherency and chaos and is thus impossible.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2129032&amp;1=default&amp;2=en&amp;3=" token="QfcJn0M1tHm153iDM9tGglmBgJD7CtkkCD2EHZHzgdY"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://randomneuronsfiring.blogspot.com" lang="" typeof="schema:Person" property="schema:name" datatype="">Bill Snedden (not verified)</a> on 27 Jun 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2129032">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2129033" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1277700798"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>@52 I'll refer you to the last sentence of my first comment: "Remember, if your only response is that my world view, in which logic and mathematics could have been different from what they are, is logically impossible, then you've missed the point!" Of course it is logically absurd for logic to be different than what it is, just as it is logically absurd for "A &amp; not A" to be a theorem of first order logic. But the key word is "logically". It is useless to reason logically about a situation in which logic itself is different.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2129033&amp;1=default&amp;2=en&amp;3=" token="k9XAyjYFVrS801_jaO6_nHXrD0q6OQ3rT34LGfaidYI"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Keshav Srinivasan (not verified)</span> on 28 Jun 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2129033">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2129034" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1277707619"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>@53: "It is useless to reason logically about a situation in which logic itself is different."</p> <p>Ah...hm...well, then you might as well shorten that sentence to read, "It is useless to reason." I hope you at least realize that your own argument is self-contradictory: if you're right, you're also wrong. A bit like arguing for solipsism; sure you might be right, but if you are you're talking to yourself...why argue the point?</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2129034&amp;1=default&amp;2=en&amp;3=" token="jXnTGOEwE-WWEBu1MY6dbhvZty7f5YCb6EJ67OIqKrY"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://randomneuronsfiring.blogspot.com" lang="" typeof="schema:Person" property="schema:name" datatype="">Bill Snedden (not verified)</a> on 28 Jun 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2129034">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2129035" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1277708433"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Damn this lack of an edit feature!</p> <p>@53: Besides which, it's not in any way a case of "mathematics and logic being <b>different</b>. It's a case of them <b>not existing at all</b>. If the state of affairs of existence were to be such that the law of non-contradiction were not to be a veridical representation of it, there could be no logic or mathematics <b>at all</b>; there would be only eternal, immutable chaos. Without a means of determining the state of reality, there would be no way to formalize (or even conceptualize) logic, not to mention the total inability to form any abstractions or concepts whatsoever. Without distinction of differences, there could be no numbers and no way to conceive or formalize mathematics.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2129035&amp;1=default&amp;2=en&amp;3=" token="sVMtAin_moQA-JZRIBxLAjUNlIKOBqMx8Suz26D95hQ"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://randomneuronsfiring.blogspot.com" lang="" typeof="schema:Person" property="schema:name" datatype="">Bill Snedden (not verified)</a> on 28 Jun 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2129035">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="138" id="comment-2129036" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1277712611"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>@53:</p> <p>You're basically falling back to an un-falsifiable position, while challenging us to falsify it:</p> <p>You're asserting that there is some sort of pre-logic, without which logic as we understand it couldn't exist. But, you cannot describe or define that pre-logic in any meaningful way. </p> <p>Naturally, any attempt to argue against that position is doomed to fail, for the same reasons as any non-falsifiable argument: since your argument is fundamentally based on something undefined, no matter what someone puts forward as a counter-argument, you can always say "No, that's not what I'm talking about".</p> <p>Logic is a complete, self-contained formal system of abstract rules. Those rules have inevitable consequences. Those consequences aren't dependent on any "pre-formal" system. In fact, they aren't dependent on any notion of <em>semantics</em> or meaning. Logic is purely mechanical, syntactic inference.</p> <p>You don't need any agent to <em>tell you</em> that if "A" is true, and "A ⇒ B" is true, then "B" is true. That's not dependent on meaning. It's not dependent on a pre-formal logic.</p> <p>You're also pulling out one of the standard, rubbish traps of theistic arguments: that if there's no god, then there's no truth. Again, that's crap. The universe <em>exists</em>. We can see that. That's <em>true</em>. Whether or not God exists, I can observe that <em>I</em> exist. That is <em>true</em>, regardless of whether or not there is a God.</p> <p>If you define numbers axiomatically (i.e., using logic), then the prime numbers exist. They're just a simple consequence of definition. God can't make 4 prime, because 4 <em>is</em> 2*2. </p> <p>God can't create a universe where first order predicate logic doesn't work - first order predicate logic doesn't even require a universe to exist at all: it's a pure abstraction. An all-powerful deity could create a universe where FOPL doesn't accurately describe anything about the behavior of the universe. For example, blow away cause and effect, and FOPL ceases to be a particularly useful tool. But that doesn't change the fundamental validity of<br /> FOPL as a self-contained formal system. </p> <p>I can define a logical system which is valid, but which doesn't do anything particularly useful. I can use FOPL to define a number system which works in bizarre ways. (In fact, John Conway did exactly that with the Nimbers, which are incredibly strange.) But the existence of an alternate number system doesn't change the fact that if you take FOPL and the Peano axioms, you'll get the natural numbers. And no matter what anyone does, no matter what form the universe takes, no matter what the deity wills, if you use FOPL and Peano to define the natural numbers, 4 will <em>not</em> be a prime.</p> <p>As I've said plenty of times around here: I'm not an atheist; I'm a religious Jew. But I find this kind of argument for theism to be pathetically shallow and foolish. I don't understand the need to create these ridiculous assertions like "If there's no god, then you could just say 4 is prime". That's doesn't support your argument: it just shows that you don't understand what you're talking about.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2129036&amp;1=default&amp;2=en&amp;3=" token="OY6WNMhoMjU9YiXFsJO0MiUH82Y-B1BcDYiLFgAvSK8"></drupal-render-placeholder> </div> <footer> <em>By <a title="View user profile." href="/goodmath" lang="" about="/goodmath" typeof="schema:Person" property="schema:name" datatype="">goodmath</a> on 28 Jun 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2129036">#permalink</a></em> <article typeof="schema:Person" about="/goodmath"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/goodmath" hreflang="en"><img src="/files/styles/thumbnail/public/pictures/markcc.jpg?itok=PmLQEFZp" width="92" height="100" alt="Profile picture for user goodmath" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2129037" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1277718560"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Hello.</p> <p>These spiral of primes are your 2D thought pattern produced onto a 2d sheet. You have to make quantum leaps from point to point based on an ever expanding and then contracting personal math pi. It is your personal thought being projected onto one inner side of perfect cube box that you alone inhabit. Inside, at each moment your wave function completely collapses and then returns depending on your WILL).</p> <p>You can see the fully completed equations between our Matrix/Avatar/Inception "real life" that leads in thought and logic to classical theory which finally leads to quantum theory here:</p> <p><a href="http://www.wix.com/hyperstig/hyperstig">http://www.wix.com/hyperstig/hyperstig</a></p> <p>All of existence is built on these 3 principles constantly extrapolating from the original zero =&gt; [The Big Bang(i.e. The centre super-massive black hole at the centre of our galaxy) that is attempting to pull us(STARS back in)].</p> <p><a href="http://www.wix.com/hyperstig/simple">http://www.wix.com/hyperstig/simple</a></p> <p>There will be a total collapse of our sector of the universe. It is a gravity wave; the same kind that wiped out Atlantis; the dinosaurs and other major civilizations.</p> <p>Unless we apply the simple visual principle to keep re-building the "big box" the outcome is an escalating probability towards TRUE. We will either make it or we won't. </p> <p>If not, our "powerful" civilization will be wiped out in a day leaving nothing but small radiations from the edge of the black hole as hawking described.</p> <p>We are nothing but imagination and memories and WILL anyhow. I wonder if we'll make it this time??? I guess it's a better shot as we have better communications this time.</p> <p>The universe is digital. It always has been. It's nothing more than mathematical logic that sprang from the fear of NOT existing. </p> <p>A B C easy as 1 2 3 easy as DO RAY ME ABC 1 2 3 BABY YOU AND ME GIRL.</p> <p>I hope you do TOO. I guess you will seeing as you're fractal just like me.</p> <p>It just that I found the bottom, made sure everything was al-right and then start to look around and find you people. </p> <p>You are a singular STAR with a perfectly cubed black hole at the centre of you. How do you think we're communicating?</p> <p>The internet???</p> <p>Do you think that's air you're breathing???</p> <p>That's just alternating fission and fusion.</p> <p>Pick a random length of pie(your stars diameter) and STOP and look around(360 degrees in all directions). </p> <p>Start making connections in a non linear way. You simply are a box and are in a box.</p> <p>Time does not exist now. We don't need it.</p> <p>It is just a construct that either points you in a direction(old school watch) or gives you a position in a perfectly cubed grid that tells you x,y,z where you are.(digital). You are who, what and where you are.</p> <p>Start making connections with your "family". </p> <p>Superposition holds true. You are everywhere and no-where. That's why no-one in the world knows what we need to do.</p> <p>You're in a box that surrounds the milky way. It's the first quantum computer and each of you are a bit in that system. I couldn't show the ALPHA release until now for reasons I'll keep to myself.</p> <p>Just know that it is a self organising system that will work with you; not against. Karma rings TRUE fully in this system. I just thought I'd let you know that.</p> <p>Finally; the math PROVES that re-incarnation is TRUE. </p> <p>It doesn't say what you will become; but your memory and WILL lives forever. Once you have been "born" you CANNOT die. You might as well face whatever you have done and start your LIFE again. What's the point in waiting for what comes after???</p> <p>Enjoy.</p> <p>Ste.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2129037&amp;1=default&amp;2=en&amp;3=" token="qoQWL-Kocukee-px36HwjmNgDphZ3l9C_mPHNWQpuMQ"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Steven Twentyman (not verified)</span> on 28 Jun 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2129037">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2129038" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1277906107"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>@#57: Let me be first to say: LOLWUT?!</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2129038&amp;1=default&amp;2=en&amp;3=" token="JocHGwBht86eDbzTtM3Px0Hnb9xMsR79s-F4Iqg1Lcc"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">rpsms (not verified)</span> on 30 Jun 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2129038">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2129039" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1278045314"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Hello people,</p> <p>I just went through the document. I also tried similar spirals with numbers divisible by other numbers. I am sharing the images in <a href="http://punarvak.blogspot.com/2010/07/ulam-spirals-and-its-variants.html">http://punarvak.blogspot.com/2010/07/ulam-spirals-and-its-variants.html</a>. Have a look at them.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2129039&amp;1=default&amp;2=en&amp;3=" token="56k5Q70NXTrRbc3Z6AS4hCM4pfqZsZmpZ8D2nQ8b__c"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Punarva (not verified)</span> on 02 Jul 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2129039">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2129040" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1278046070"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>The spiral for Fibonacci numbers have very scarce details. Because occurance of fibonacci numbers is only scarce.</p> <p>Check the image in my blog <a href="http://www.punarvak.blogspot.com">www.punarvak.blogspot.com</a>.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2129040&amp;1=default&amp;2=en&amp;3=" token="rMPWGTMyj-POFjJeabJg5YfjAooxM3oeXBwNpoZ5LkE"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Punarva (not verified)</span> on 02 Jul 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2129040">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2129041" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1278247497"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>I have a number of short publications and presentations, and hundreds of pages of notes, on the Semiprime Spiral.</p> <p>A semiprime, also called a 2-almost prime, biprime (Conway et al. 2008), or pq-number, is a composite number that is the product of two (possibly equal) primes. The first few are 4, 6, 9, 10, 14, 15, 21, 22, ... </p> <p>For an example, see:<br /> <a href="http://www.research.att.com/~njas/sequences/A113688">http://www.research.att.com/~njas/sequences/A113688</a></p> <p>A113688 Isolated semiprimes in the semiprime spiral. </p> <p>65, 74, 249, 295, 309, 355, 422, 511, 545, 667, 669, 721, 723, 749, 758 (list; graph; listen)</p> <p>OFFSET<br /> 1,1</p> <p>COMMENT<br /> Write the integers 1, 2, 3, 4, ... in a counterclockwise square spiral. Analogous to Ulam coloring in the primes in the spiral and discovering unexpectedly many connected diagonals, we construct a semiprime spiral by coloring in all semiprimes (A001358). Each integer has 8 adjacent integers in the spiral, horizontally, vertically and diagonally. Curious extended clumps coagulate, slightly denser towards the origin, of semiprimes connected by adjacency. This sequence gives isolated semiprimes in the semiprime spiral, namely those semiprimes none of whose adjacent integers in the spiral are semiprimes. A113688 gives an enumeration of the number of semiprimes in clumps of size &gt;1 through n^2. </p> <p> REFERENCES </p> <p>Stein, M. and Ulam, S. M. "An Observation on the Distribution of Primes." Amer. Math. Monthly 74, 43-44, 1967.</p> <p>Stein, M. L.; Ulam, S. M.; and Wells, M. B. "A Visual Display of Some Properties of the Distribution of Primes." Amer. Math. Monthly 71, 516-520, 1964.</p> <p>S. M. Ellerstein, The square spiral, J. Recreational Mathematics 29 (#3, 1998) 188; 30 (#4, 1999-2000), 246-250.</p> <p>LINKS<br /> Eric Weisstein's World of Mathematics, "Prime Spiral".</p> <p>Eric Weisstein's World of Mathematics, "Semiprime.".</p> <p>EXAMPLE </p> <p>......................</p> <p>... 17 16 15 14 13 ...</p> <p>... 18 5 4 3 12 ...</p> <p>... 19 6 1 2 11 ...</p> <p>... 20 7 8 9 10 ...</p> <p>... 21 22 23 24 25 ...</p> <p>CROSSREFS </p> <p>Cf. A001107, A001358, A002939, A002943, A004526, A005620, A007742, A033951-A033954, A033988, A033989-A033991, A033996, A063826.</p> <p>KEYWORD<br /> easy,nonn</p> <p>AUTHOR<br /> Jonathan Vos Post (jvospost3(AT)gmail.com), Nov 05 2005</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2129041&amp;1=default&amp;2=en&amp;3=" token="EcFeyCpeH_7UlLFbvj0RE1gzgsI_ZSb9wbDYnj5wBOY"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://magicdragon.com" lang="" typeof="schema:Person" property="schema:name" datatype="">Jonathan Vos Post (not verified)</a> on 04 Jul 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2129041">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2129042" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1278398131"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Take a sheet of graph paper. Put "1" in some square. Then put "2" in the square to the right and continue on from there, putting one number in each square. Then circle each of the prime numbers. </p> <p>If you do that for a while - and zoom out, so that you can't see the numbers, but just dots for each circled number, what you'll get will look something like this:</p> <p>. . . ...... .. . . . . .. . . </p> <p>Oh my gawd - notice how the prime numbers form a completely straight line!!!</p> <p>I call that Ankers line. It's amazing how were still discovering underlying principles of math and the universe.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2129042&amp;1=default&amp;2=en&amp;3=" token="28fmg_2RKzxXhhW_wuS8xMCzGfGfayARqIT3K5drSjo"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Mads Anker (not verified)</span> on 06 Jul 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2129042">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2129043" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1278498908"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>@50 and @51 seem to explain why there are diagonals. But why does the Ulam figure as a whole seem to have a half-rotation symmetry? Notice that the NE-SW prime-rich lines in the NW quadrant seem to match up with those in the SE. But while NW-SE prime-rich diagonals do exist, they don't have the half-rotation symmetry.<br /> Or has someone already answered that?</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2129043&amp;1=default&amp;2=en&amp;3=" token="Bk6OubLpnepUhhaOSHV-jUkD72HNhLL64ndlbWJqAwg"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://IBlogALot.NOT" lang="" typeof="schema:Person" property="schema:name" datatype="">Perplexed in Peoria (not verified)</a> on 07 Jul 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2129043">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2129044" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1278500414"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>My method really divides things into N, S, E, W quadrants. </p> <p>Produce the polynomials for some of the NE-SW lines in ? quadrant and the corresponding ? quadrant and we'll see if there's a relationship.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2129044&amp;1=default&amp;2=en&amp;3=" token="zS3POcAvQXzFnC86wBNRYX6DRhwmtV0cJq7h0PDv0Ag"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">ralphmerridew (not verified)</span> on 07 Jul 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2129044">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2129045" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1278516830"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>This is a real effect. The line joining the NW to the SE corner of the figure divides the square into two triangles. The lines lying above the division and heading in the NE direction have equations of the form 4x^2-2x+c; the lines lying below the division and heading in the SW direction have equations of the form 4x^2+2x+c. For a given c value, these two lines are expected to contain the same density of primes as x=0,1,2,... In fact, if x is allowed to take negative values, these two lines are seen to be the same. That is, they connect to each other, after spiraling around a bit in the center. To be more precise, the density of primes lying on a quadratic is conjectured to be sensitive to the discriminant, which equals 4-16c^2 for both types of line. This is the reason for the symmetry you observed.</p> <p>Why isn't there a similar symmetry between the NW and SE lines? In this case we divide the square into two triangles by drawing the line joining the NE and SW corners. The lines lying above the division and heading in the NW direction have the form 4x^2+c, while the lines lying below the division and heading in the SE direction have the form 4x^2+4x+c = (2x+1)^2 + (c-1). Notice that these two types of lines are not related to each other by negating x as was the case before. (For both types, the "negative" half of a line coincides with its positive half.) The discriminant of the NW lines is -16c, while the discriminant of the SE lines is 16-16c. It might appear that for a given NW line 4x^2+c, the SE line 4x^2+4x+(c+1) would have the same discriminant, and therefore the same density of primes. The reason this doesn't happen is that if c is odd then c+1 is even, and 4x^2+4x+(c+1) contains no primes at all! Likewise if c is even, 4x^2+c contains no primes, while 4x^2+4x+(c+1) is expected to contain infinitely many of them.</p> <p>It is important to note that nobody has any idea how to prove that even a single quadratic ax^2+bx+c contains infinitely many primes, although this is widely believed to be the case as long as the quadratic doesn't fail for one of the obvious reasons, the "obvious" reasons being that</p> <p>1) a, b, c have a common factor;<br /> 2) (a+b) and c are both even;<br /> 3) the polynomial is reducible.</p> <p>The conjecture for the density of primes on a quadratic obviously depends on there being infinitely many of them, and is therefore even farther from rigorous proof.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2129045&amp;1=default&amp;2=en&amp;3=" token="wr4486a-pZbFnT9LC5M7LmBeJ3L7XifMNUYbtmM-r3M"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://mypage.iu.edu/~worrick" lang="" typeof="schema:Person" property="schema:name" datatype="">Will Orrick (not verified)</a> on 07 Jul 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2129045">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2129046" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1278774073"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Thx, guys. The Ulam spiral no longer seems magical. So I'm not sure whether I have gained or lost.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2129046&amp;1=default&amp;2=en&amp;3=" token="VpU4w3MNedgb-BQ4Aso34UaOrebpdXAOPzM5RuNvV6w"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Perplexed in Peoria (not verified)</span> on 10 Jul 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2129046">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2129047" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1279620277"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>I used to come across similar patterns when I made attempts at pixel art when I would overlay different types of cross-hatching. Removing the multiples of a prime, even in a spiral, should approximately cross hatch and so this pattern makes sense.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2129047&amp;1=default&amp;2=en&amp;3=" token="NhZ_-boLgkwxMPoO3Kwq3cRmnR5mg63A0oDLmcGUJL4"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">denny abraham (not verified)</span> on 20 Jul 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2129047">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2129048" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1279790803"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>I'm not sure this sort of thing has much value. It strikes me as falling prey to the same kind of thing that religious use of gematria and Bible Codes do - there are an infinitude of ways you can arrange things. Evolution gave you eyes and a mind geared to finding patterns where there aren't any.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2129048&amp;1=default&amp;2=en&amp;3=" token="GOWOUoYK4c987s-Lnabu5bNHT0bguE75yf7Px024Tgk"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Puzzled (not verified)</span> on 22 Jul 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2129048">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> </section> <ul class="links inline list-inline"><li class="comment-forbidden"><a href="/user/login?destination=/goodmath/2010/06/22/the-surprises-never-eend-the-u%23comment-form">Log in</a> to post comments</li></ul> Tue, 22 Jun 2010 09:58:52 +0000 goodmath 92807 at https://scienceblogs.com Dorky Poll: Numbers https://scienceblogs.com/principles/2010/04/07/dorky-poll-numbers <span>Dorky Poll: Numbers</span> <div class="field field--name-body field--type-text-with-summary field--label-hidden field--item"><p>I'm still getting things squared away after my blogging break, but as a step on the way back toward normal programming, here's a Dorky Poll: What kind of numbers do you most like to work with?</p> <p><script type="text/javascript" charset="utf-8" src="http://static.polldaddy.com/p/3018728.js"></script></p><p><noscript><br /> <a href="http://answers.polldaddy.com/poll/3018728/">What kind of numbers do you like best?</a><span style="font-size:9px;"><a href="http://www.polldaddy.com">online surveys</a></span><br /> </noscript></p> <p>You can only choose a single answer, which I'm sure will come as a disappointment to many of those favoring the later options. You could always vote a second time from a different computer, though...</p> </div> <span><a title="View user profile." href="/author/drorzel" lang="" about="/author/drorzel" typeof="schema:Person" property="schema:name" datatype="">drorzel</a></span> <span>Wed, 04/07/2010 - 05:29</span> <div class="field field--name-field-blog-tags field--type-entity-reference field--label-inline"> <div class="field--label">Tags</div> <div class="field--items"> <div class="field--item"><a href="/tag/math" hreflang="en">math</a></div> <div class="field--item"><a href="/tag/polls" hreflang="en">polls</a></div> <div class="field--item"><a href="/tag/science" hreflang="en">Science</a></div> <div class="field--item"><a href="/tag/silliness" hreflang="en">silliness</a></div> <div class="field--item"><a href="/tag/numbers" hreflang="en">numbers</a></div> <div class="field--item"><a href="/tag/poll" hreflang="en">poll</a></div> <div class="field--item"><a href="/tag/silly" hreflang="en">silly</a></div> <div class="field--item"><a href="/tag/math" hreflang="en">math</a></div> <div class="field--item"><a href="/tag/polls" hreflang="en">polls</a></div> <div class="field--item"><a href="/tag/science" hreflang="en">Science</a></div> </div> </div> <section> <article data-comment-user-id="0" id="comment-1634555" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1270632779"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Triangular, specifically, but I also preferred Real Analysis to most other things in general.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=1634555&amp;1=default&amp;2=en&amp;3=" token="K23WHFHIbxTj4Dv5X_EzlUmlwaCgd5KoxrZHJ3Xx5w0"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://keyboardtheologians.blogspot.com" lang="" typeof="schema:Person" property="schema:name" datatype="">Dan Lower (not verified)</a> on 07 Apr 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-1634555">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-1634556" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1270632889"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Double precision floating point.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=1634556&amp;1=default&amp;2=en&amp;3=" token="MX3foIzcVsTQgZghqeCyoiX4UtuPkb4XzTDnefpd918"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Eric (not verified)</span> on 07 Apr 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-1634556">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-1634557" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1270633379"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>I always liked NaN myself. Division by zero, anyone?</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=1634557&amp;1=default&amp;2=en&amp;3=" token="MASvQ3jhkrq5SuFxllYtBn4gFoHQqauPQWZB_nRHKzg"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Don (not verified)</span> on 07 Apr 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-1634557">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-1634558" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1270634021"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>I don't see primes listed... Yes, I know they're a subset of another option, but they're special enough to deserve their own mention.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=1634558&amp;1=default&amp;2=en&amp;3=" token="QalwwtloKm5uxguvHyLOiQreICJR5vDI09d3pqy0XR4"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Mystyk (not verified)</span> on 07 Apr 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-1634558">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-1634559" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1270635532"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Numbers that make sense ;). Today's computer kid generation just lost all sense of significant digits, like using an instrument that's calibrated to 0.1% accuracy and then presenting a report discussing the variations in the 5 - 8th digit. Just because that's what the computer spits out after an A-D conversion, so that's the precision of the measurement, and the randomness has to be explained away. Even worse if they "recognize" the discrete values an A-D converter produces as "quantization" of the phenomenon.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=1634559&amp;1=default&amp;2=en&amp;3=" token="qPrCIMgVrd1Vy9iW30TbfgjOxXHS1fZW74etVYy8JJU"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Mu (not verified)</span> on 07 Apr 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-1634559">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-1634560" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1270637562"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Ordinals.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=1634560&amp;1=default&amp;2=en&amp;3=" token="fkFyUNC0rNsnlDbKxzHYtfzA-3emopn4LWNxI7wGvcM"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">HP (not verified)</span> on 07 Apr 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-1634560">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-1634561" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1270637900"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Missing options: algebraic and rational numbers.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=1634561&amp;1=default&amp;2=en&amp;3=" token="2mbNmAvfLC8wfi08_VEDqp1BghOyabx9zEf3g7RntkM"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Alex Besogonov (not verified)</span> on 07 Apr 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-1634561">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-1634562" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1270638349"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>The brightly colored ones, please...</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=1634562&amp;1=default&amp;2=en&amp;3=" token="4EbQhHyjxqG29c_5Xvz9bHNGflr_gAXTztHibBc3i-A"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Melissa (not verified)</span> on 07 Apr 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-1634562">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-1634563" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1270639395"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Don't know about yours, but my classical measurement apparatus does not work with real numbers. It likes rational ones, instead. </p> <p>Oh, life would be so easy if the guy behind the apparatus were so rational as the numbers he reads!</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=1634563&amp;1=default&amp;2=en&amp;3=" token="WAKRaKlbP4vfvAzpUjit6vqOsFzoU7Ofpj_JvL4eFaU"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Roberto Baginski (not verified)</span> on 07 Apr 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-1634563">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-1634564" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1270640495"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>While I agree with Eric and Don, it is a daily challenge working with a finite model of the reals which is not reflexive and trichotomy does not hold, i.e. x != x may be true, and none of x &lt; 0, x == 0, or x &gt; 0 can be true.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=1634564&amp;1=default&amp;2=en&amp;3=" token="COFSd1k9776EM-YO8YcNk4Xonkkd3pP3g9G0h8BSHOU"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Ron (not verified)</span> on 07 Apr 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-1634564">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-1634565" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1270643809"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>ones that <i>don't</i> require floating point to represent approximate. integers, rationals and fixed-point decimals, that is. bonus points if they don't require bignums either; arbitrary-size integers are cool and all, but limited-size ones are so much faster to work with.</p> <p>(poll? there's a poll, like with radio buttons and whatnot? it must be getting filtered out by my ad blocking, if so.)</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=1634565&amp;1=default&amp;2=en&amp;3=" token="-uHosmNxpRYwksd1h6jxUBE2sIYkfEYfOOAQMdZH34Y"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Nomen Nescio (not verified)</span> on 07 Apr 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-1634565">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-1634566" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1270645300"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>I'm a mathematician, of the algebraic persuation, so I voted 'complex numbers'. </p> <p>HOWEVER: Numbers are for pussies, it's the mathematical structures built on the basal number systems that are interesting. Algebraists care about (among other things) solutions of polynomials, which makes structures over the complex numbers interesting. Differential geometers only care about the differentiability of their mathematical gadgets, so they work with stuff over the reals. Analysts work with both real and complex analysis. Topologists don't care about numbers, they work in complete generality. Combinatorists work with integers (or natural numbers, strictly speaking). Mathematical logicians work with arbitrary ordinals and cardinals. No one works with pure imaginary numbers.</p> <p>Also: it's 'octoniOns', complex numbers are not messy (at least not in the 'grey areas' sense), and Ron @10: there is no finite model for the reals, and the rest of your comment is nonsense, so I assume your are pulling an educated trolling.</p> <p>FWIW, whenever I am asked what my favourite number is, I answer (truthfully), 'n'.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=1634566&amp;1=default&amp;2=en&amp;3=" token="ngzjMII6lYaiQn2iDtM8Y71ZOsCIlDK67I5B4tbYAq4"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Ketil Tveiten (not verified)</span> on 07 Apr 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-1634566">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-1634567" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1270655305"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>I like round numbers, because sometimes people get a little overly precise. Not long ago I was asked if I was picking the depth to a coal seam (1-2 feet thick*) at the top or bottom of the seam. The seam was more than 1000 feet below land surface and, in the hilly coal country of southwestern Virginia, I'd guess the surface elevation surveyed for the well had an precision of at best +/- 5 feet. I thought to myself, 'what does it matter?'</p> <p>*American coal and petroleum geologists will go metric when Hell freezes over</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=1634567&amp;1=default&amp;2=en&amp;3=" token="fTMNvEPJc5Ndq0n65nmkEWSUFgOsD5EMKbNwyYaHxPY"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">marciepooh (not verified)</span> on 07 Apr 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-1634567">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-1634568" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1270658057"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>The world actually appears to be complex. QED operates over the complex numbers. Strings moving through time sweep out world-sheets which live in Teichmuller Spaces which have a natural complex structure. We may only be able to imagine rationals, but that's our shortcoming.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=1634568&amp;1=default&amp;2=en&amp;3=" token="qQR4dSE1EkW5IhjoqQAgAOGOcfY2Y0j-GIu7ro_9pGM"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://www.jimandellen.org" lang="" typeof="schema:Person" property="schema:name" datatype="">jim (not verified)</a> on 07 Apr 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-1634568">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-1634569" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1270661460"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p><i>and Ron @10: there is no finite model for the reals, and the rest of your comment is nonsense, so I assume your are pulling an educated trolling.</i></p> <p>Ron's comment makes perfect sense; it's about the problems inherent in using floating-point numbers on computers.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=1634569&amp;1=default&amp;2=en&amp;3=" token="v7TzGRaLYiDB87BAE_qvTEoxgdhsRf_WSkCMGmaUdJI"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">onymous (not verified)</span> on 07 Apr 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-1634569">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-1634570" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1270675436"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>I used quaternians once in my life. it was pretty fun actually. once i got my mind wrapped around it...</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=1634570&amp;1=default&amp;2=en&amp;3=" token="cYm9zZC_fUHNl9ntoc2uOtAJyxpfN8TKRKHL5wCszl4"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Brian (not verified)</span> on 07 Apr 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-1634570">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-1634571" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1270684999"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>My comment was garbled by html parsing. I was referring to IEEE-754 floating point arithmetic, where x != x may hold for NaN (not a number) values of x, and for which all of x is less than 0, x is equal to 0, and x is greater than 0 are false at the same time, since any comparison to a NaN value is false.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=1634571&amp;1=default&amp;2=en&amp;3=" token="9dC25Qmw0jOcVjlYsnq9KzWpxjaJPY7bsU7MjaawoOQ"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Ron (not verified)</span> on 07 Apr 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-1634571">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-1634572" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1270733384"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Bah, I'm with Kronecker. Give me the integers and thus, the Rationals.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=1634572&amp;1=default&amp;2=en&amp;3=" token="cy9SYcb1yFj_xJPA6WtMMCYAMxrAtKsA6yQqxDyVhyE"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Markk (not verified)</span> on 08 Apr 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-1634572">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> </section> <ul class="links inline list-inline"><li class="comment-forbidden"><a href="/user/login?destination=/principles/2010/04/07/dorky-poll-numbers%23comment-form">Log in</a> to post comments</li></ul> Wed, 07 Apr 2010 09:29:54 +0000 drorzel 46441 at https://scienceblogs.com Mathematical Nature? https://scienceblogs.com/grrlscientist/2010/03/25/nature-by-numbers <span>Mathematical Nature?</span> <div class="field field--name-body field--type-text-with-summary field--label-hidden field--item"><p><span style="font-size: 10px">tags: <a target="window" href="http://technorati.com/tag/nature" rel="tag">nature</a>, <a target="window" href="http://technorati.com/tag/numbers" rel="tag">numbers</a>, <a target="window" href="http://technorati.com/tag/geometry" rel="tag">geometry</a>, <a target="window" href="http://technorati.com/tag/mathematics" rel="tag">mathematics</a>, <a target="window" href="http://technorati.com/tag/Fibonacci+sequence" rel="tag">Fibonacci sequence</a>, <a target="window" href="http://technorati.com/tag/golden+ratio" rel="tag">Golden Ratio</a>, <a target="window" href="http://technorati.com/tag/angle+ratio" rel="tag">Angle Ratio</a>, <a target="window" href="http://technorati.com/tag/Delaunay+Triangulation" rel="tag">Delaunay Triangulation</a>, <a target="window" href="http://technorati.com/tag/Voronoi+Tessellations" rel="tag">Voronoi Tessellations</a>, <a target="window" href="http://technorati.com/tag/filmmaking" rel="tag">filmmaking</a>, <a target="window" href="http://technorati.com/tag/animation" rel="tag">animation</a>, <a target="window" href="http://technorati.com/tag/Cristobal+Vila" rel="tag">Cristobal Vila</a>, <a target="window" href="http://technorati.com/tag/Nature by Numbers" rel="tag">Nature by Numbers</a>, <a target="window" href="http://technorati.com/tag/streaming+video" rel="tag">streaming video</a></span></p> <p>In this beautiful video, "Nature by Numbers," filmmaker Cristobal Vila presents a series of animations illustrating various mathematic principles, beginning with a breathtaking animation of the Fibonacci Sequence before moving on to the Golden Ratio, the Angle Ratio, the Delaunay Triangulation and Voronoi Tessellations. The words are scary-sounding, but the math is beautiful and the film serves to remind us of the intimate relationship between nature and math. </p> <!--more--><object width="560" height="340"><param name="movie" value="http://www.youtube.com/v/kkGeOWYOFoA&amp;hl=en_US&amp;fs=1&amp;rel=0" /><param name="allowFullScreen" value="true" /><param name="allowscriptaccess" value="always" /><embed src="http://www.youtube.com/v/kkGeOWYOFoA&amp;hl=en_US&amp;fs=1&amp;showinfo=0" type="application/x-shockwave-flash" allowscriptaccess="always" allowfullscreen="true" width="560" height="340"></embed></object><p> This movie was inspired by numbers, geometry and nature. You can learn more about Cristóbal Vila at <a target="window" href="http://www.etereaestudios.com/">etereaestudios</a>. That website has more information about the film, including a fascinating step-by-step explanation of <a target="window" href="http://www.etereaestudios.com/docs_html/nbyn_htm/about_index.htm">the theory behind the film</a> (English is side-by-side con Español), along with stills, screenshots, tutorials and workshops. </p> <p>NOTE: after I'd scheduled this entry, I realized that my colleague, <a target="window" href="http://scienceblogs.com/bioephemera/2010/03/fibonacci_ftw.php">Bioephemera</a> already showed it to her Sb readers. Even though I don't think our readership overlaps, I rescheduled this to pop up a few days later anyway. In the meanwhile, I've been enjoying this beautiful video every day while I waited to share it with you. </p> </div> <span><a title="View user profile." href="/author/grrlscientist" lang="" about="/author/grrlscientist" typeof="schema:Person" property="schema:name" datatype="">grrlscientist</a></span> <span>Thu, 03/25/2010 - 01:59</span> <div class="field field--name-field-blog-tags field--type-entity-reference field--label-inline"> <div class="field--label">Tags</div> <div class="field--items"> <div class="field--item"><a href="/tag/art" hreflang="en">Art</a></div> <div class="field--item"><a href="/tag/nature" hreflang="en">Nature</a></div> <div class="field--item"><a href="/tag/streaming-videos" hreflang="en">streaming videos</a></div> <div class="field--item"><a href="/tag/angle-ratio" hreflang="en">Angle Ratio</a></div> <div class="field--item"><a href="/tag/animation" hreflang="en">Animation</a></div> <div class="field--item"><a href="/tag/cristobal-vila" hreflang="en">Cristobal Vila</a></div> <div class="field--item"><a href="/tag/delaunay-triangulation" hreflang="en">Delaunay Triangulation</a></div> <div class="field--item"><a href="/tag/fibonacci-sequence" hreflang="en">Fibonacci sequence</a></div> <div class="field--item"><a href="/tag/filmmaking" hreflang="en">filmmaking</a></div> <div class="field--item"><a href="/tag/geometry" hreflang="en">Geometry</a></div> <div class="field--item"><a href="/tag/golden-ratio" hreflang="en">Golden Ratio</a></div> <div class="field--item"><a href="/tag/mathematics" hreflang="en">Mathematics</a></div> <div class="field--item"><a href="/tag/nature-numbers" hreflang="en">Nature by Numbers</a></div> <div class="field--item"><a href="/tag/numbers" hreflang="en">numbers</a></div> <div class="field--item"><a href="/tag/streaming-video" hreflang="en">streaming video</a></div> <div class="field--item"><a href="/tag/video" hreflang="en">Video</a></div> <div class="field--item"><a href="/tag/voronoi-tessellations" hreflang="en">Voronoi Tessellations</a></div> <div class="field--item"><a href="/tag/art" hreflang="en">Art</a></div> <div class="field--item"><a href="/tag/nature" hreflang="en">Nature</a></div> <div class="field--item"><a href="/tag/streaming-videos" hreflang="en">streaming videos</a></div> </div> </div> <section> <article data-comment-user-id="0" id="comment-2074562" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1269556069"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>I'm sure our readers overlap somewhat - besides, it's viral now - a professor up here showed it to his class on Wednesday. :) Isn't it awesome?</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2074562&amp;1=default&amp;2=en&amp;3=" token="Rpi-dMQZP2q2smob6s_oxu5wX4KdsgSeDva-hdlZlac"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://www.scienceblogs.com/bioephemera" lang="" typeof="schema:Person" property="schema:name" datatype="">bioephemera (not verified)</a> on 25 Mar 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2074562">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="134" id="comment-2074563" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1269688038"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>yeah, it's great! some of the best dreams i ever had were when i was taking calculus, and i dreamt about the formulae and proofs i was studying. watching this video makes me want to take more mathematics classes.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2074563&amp;1=default&amp;2=en&amp;3=" token="ZnOjaCvHglH4dXd1gO-d28BBbebWMWRlQbfX-JgQEAk"></drupal-render-placeholder> </div> <footer> <em>By <a title="View user profile." href="/author/grrlscientist" lang="" about="/author/grrlscientist" typeof="schema:Person" property="schema:name" datatype="">grrlscientist</a> on 27 Mar 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2074563">#permalink</a></em> <article typeof="schema:Person" about="/author/grrlscientist"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/author/grrlscientist" hreflang="en"><img src="/files/styles/thumbnail/public/pictures/Hedwig%20P%C3%B6ll%C3%B6l%C3%A4inen.jpeg?itok=-pOoqzmB" width="58" height="58" alt="Profile picture for user grrlscientist" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2074564" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1269824825"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>I always love seeing visual artists reveal the inherent beauty, symmetry, and elegance of mathematics - especially for someone like me who cannot see or understand it by looking at symbols but only when translated into pictures and movement - then it becomes clear. That's just how my brain works, part of being a high-functioning autistic I guess.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2074564&amp;1=default&amp;2=en&amp;3=" token="ZN9XE2hGKGr4wn29PK3h96eZCgIw4cUXzSXIjNWbyiY"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://www.jkdigital.com" lang="" typeof="schema:Person" property="schema:name" datatype="">Jeff Knapp (not verified)</a> on 28 Mar 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2074564">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> </section> <ul class="links inline list-inline"><li class="comment-forbidden"><a href="/user/login?destination=/grrlscientist/2010/03/25/nature-by-numbers%23comment-form">Log in</a> to post comments</li></ul> Thu, 25 Mar 2010 05:59:23 +0000 grrlscientist 90568 at https://scienceblogs.com Single cells in the monkey brain encode abstract mathematical concepts https://scienceblogs.com/neurophilosophy/2010/01/21/single-cells-in-the-monkey-brain-encode-abstract-mathematical-concepts <span>Single cells in the monkey brain encode abstract mathematical concepts</span> <div class="field field--name-body field--type-text-with-summary field--label-hidden field--item"><p class="lead" align="justify">OUR ability to use and manipulate numbers is integral to everyday life - we use them to label, rank, count and measure almost everything we encounter. It was long thought that numerical competence is dependent on language and, therefore, that numerosity is restricted to our species. Although the symbolic representation of numbers, using numerals and words, is indeed unique to humans, we now know that animals are also capable of manipulating numerical information. </p> <p align="justify"> <a href="http://www.wjh.harvard.edu/~mnkylab/publications/learnconcepts/spont.number.rhesus.pdf">One study</a> published in 1998, for example, showed that rhesus monkeys can form spontaneous representations of small numbers and use them to choose containers with more pieces of fruit. More recently, it was found that <a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.0050328">monkeys can perform basic arithmetic</a> on a par with college students. Now, German researchers report that not only do rhesus monkeys understand simple mathematical rules, but also that these rules are encoded by single neurons in the rhesus prefrontal.<br /> </p> <!--more--><p align="justify">Animal experiments and neuroimaging studies performed with humans have implicated the prefrontal cortex (PFC) in the processing and execution of numerical operations. In humans, this part of the brain is engaged during tasks involving mathematical rules, and it has long been known that <a href="http://www.ncbi.nlm.nih.gov/pubmed/679710">damage to the PFC</a> can lead to <a href="http://www.ncbi.nlm.nih.gov/pubmed/6441896?dopt=Abstract">impaired quantitative reasoning</a>. Sylvia Bongard and <a href="http://homepages.uni-tuebingen.de/andreas.nieder/">Andreas Nieder</a> of the Institute of Neurobiology at the University of Tubingen therefore hypothesized that PFC neurons are involved in encoding aspects of numerosity, and designed a numerical task based on simple numerical rules to test this. </p> <p align="justify">Two rhesus monkeys were shown pairs of visual stimuli consisting of sets of dots and trained to compare them by applying two simple mathematical rules. In each trial, they were shown a sample set of dots followed, after a short delay, by a test set with a different number of dots. The 'greater than' rule required the monkeys to release a lever if the test set contained more dots than the sample set, whereas the 'less than' rule required them to release the lever if it contained fewer dots. During the interval between each pair of stimuli, a cue was presented, indicating which of the two rules should be applied. </p> <p align="justify">While the monkeys performed this task, microelectrodes were used to record the activity of approximately 500 individual and randomly selected PFC neurons. The response of each cell was determined during four different time periods in each trial: the time during which the sample set of dots was displayed, the delay between the sample and the cue indicating which rule to apply, the time during which thecue was displayed, and the delay between presentation of the rule-related cue and the monkeys' response to it. </p> <p align="justify">Significantly, the monkeys immediately applied the mathematical rules to all the stimuli pairs they were shown, even when the sample sets contained numerosities that had not been previously presented. Selective responses were recorded during the interval between the cue and the response. 90 rule-selective neurons (~19% of the total from which recordings were made) were detected, which fired independently of the number of dots presented or the sensory properties of the rule-related cue. Of these, 50 fired exclusively when the monkeys produced 'greater than' responses, and the remaining 40 fired exclusively when they produced 'less than' responses. Rule selectivity was not encoded immediately, but emerged in the cells after a short period of time. </p> <p align="justify">Across hundreds of trials, the monkeys had a minimum success rate of 83%. The researchers compared the neuronal responses of individual rule-selective neurons during trials in which the monkeys gave correct responses with trials in which they made errors. The firing rates were found to decrease significantly when the monkeys made the wrong choices. The selectivity of the responses also enabled the reearchers to predict which rule the monkeys were applying during each trial, from the cellular activity they recorded.<br /> </p> <p align="justify">Thus, single neurons in the lateral PFC of the rhesus monkey can flexibly encode abstract mathematical rules which guide greater than/ less than decisions. Each session involved large numbers of unique trials, so it was impossible for the monkeys to solve the task by learning. Instead, they were required to understand relationships between numerosities in each pair of stimuli, and to apply these principles to make their decisions. These findings are consistent with <a href="http://www.ncbi.nlm.nih.gov/pubmed/1822726">a model</a> which proposes that the PFC contains a network of distinct rule-coding neuron clusters, each of which receives input from a corresponding internal memory cluster and sends its output to a dedicated downstream cluster. The findings also add to a body of evidence suggesting that humans and other primates process numbers using common cognitive skills with a shared evolutionary origin. </p> <hr /> <p><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences&amp;rft_id=info%3Adoi%2F10.1073%2Fpnas.0909180107&amp;rfr_id=info%3Asid%2Fresearchblogging.org&amp;rft.atitle=Basic+mathematical+rules+are+encoded+by+primate+prefrontal+cortex+neurons&amp;rft.issn=0027-8424&amp;rft.date=2010&amp;rft.volume=&amp;rft.issue=&amp;rft.spage=&amp;rft.epage=&amp;rft.artnum=http%3A%2F%2Fwww.pnas.org%2Fcgi%2Fdoi%2F10.1073%2Fpnas.0909180107&amp;rft.au=Bongard%2C+S.&amp;rft.au=Nieder%2C+A.&amp;rfe_dat=bpr3.included=1;bpr3.tags=Neuroscience">Bongard, S. &amp; Nieder, A. (2010). Basic mathematical rules are encoded by primate prefrontal cortex neurons <span style="font-style: italic;">Proc. Nat. Acad. Sci.</span> DOI: <a rev="review" href="http://dx.doi.org/10.1073/pnas.0909180107">10.1073/pnas.0909180107</a></span>. </p> <p>Cantlon, J. F. &amp; Brannon, E. M. (2006). Basic math in monkeys and college students [<a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.0050328">Full text</a>]<br /> </p> <p>Hauser M. D., <em>et al</em>. (2000). Spontaneous number representation in semifree-ranging rhesus monkeys. <em>Proc. R. Soc. Lond. B Biol. Sci</em>. 267:829-33 [<a href="http://www.wjh.harvard.edu/~mnkylab/publications/learnconcepts/spont.number.rhesus.pdf">PDF</a>] </p> </div> <span><a title="View user profile." href="/author/neurophilosophy" lang="" about="/author/neurophilosophy" typeof="schema:Person" property="schema:name" datatype="">neurophilosophy</a></span> <span>Thu, 01/21/2010 - 05:50</span> <div class="field field--name-field-blog-tags field--type-entity-reference field--label-inline"> <div class="field--label">Tags</div> <div class="field--items"> <div class="field--item"><a href="/tag/neuroscience" hreflang="en">neuroscience</a></div> <div class="field--item"><a href="/tag/brain" hreflang="en">brain</a></div> <div class="field--item"><a href="/tag/electrophysiology" hreflang="en">electrophysiology</a></div> <div class="field--item"><a href="/tag/mathematics" hreflang="en">Mathematics</a></div> <div class="field--item"><a href="/tag/numbers" hreflang="en">numbers</a></div> <div class="field--item"><a href="/tag/prefrontal-cortex" hreflang="en">prefrontal cortex</a></div> <div class="field--item"><a href="/tag/neuroscience" hreflang="en">neuroscience</a></div> </div> </div> <div class="field field--name-field-blog-categories field--type-entity-reference field--label-inline"> <div class="field--label">Categories</div> <div class="field--items"> <div class="field--item"><a href="/channel/life-sciences" hreflang="en">Life Sciences</a></div> </div> </div> <section> <article data-comment-user-id="0" id="comment-2430683" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1264078592"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Good read. Once again our evolutionary relationship to other organisms is well evidenced.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2430683&amp;1=default&amp;2=en&amp;3=" token="yK7MKHHbVzBJZRkTAf3qme3VC497KIFkf5mIBZInVNo"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Jacob Mack (not verified)</span> on 21 Jan 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2430683">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2430684" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1264101168"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>I might have to read the papers to get the full gist, but at the moment, I dont understand how you get from the observation that</p> <p>particular neurons (out of a tiny subset of all neurons in the PFC, let alone the brain) fire exclusively when a greater than rule is applied, and other fire exclusively when a less than rule is applied,</p> <p>to the conclusion that</p> <p>"...single neurons in the lateral PFC of the rhesus monkey can flexibly encode abstract mathematical rules which guide greater than/ less than decisions."</p> <p>Identifying some neurons involved in a process doesn't necessarily imply that these neurons are encoding the entire process/concept. Surely the relationship between these neurons and possibly countless other neurons around the brain doing their thing is important, and you can't just say that firing of neuron set A in isolation encodes an abstract mathematical rule.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2430684&amp;1=default&amp;2=en&amp;3=" token="IA6vZL0AQaxlYs7Ky2OWqSjyTNM78yTX3Y8I6EbIR88"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">SteveP (not verified)</span> on 21 Jan 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2430684">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2430685" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1264114298"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>As an undergraduate who has a variety of interests mainly surrounding biology/neuroscience/philosophy this had proved a great site for leisure and challenging reading. Keep it up please.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2430685&amp;1=default&amp;2=en&amp;3=" token="0WNsgLCvRPOxvI_7vmA1HKGIDkj6Azh7OruHuZI4SqA"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Brandon (not verified)</span> on 21 Jan 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2430685">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="226" id="comment-2430686" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1264124554"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>@SteveP: Quite right - the cells could be part of a wider diffuse network, and almost certainly rely on inputs from other neurons involved in numerical processing. But that doesn't exclude the possibility that they are the only cells in this hypothetical network that respond to/ encode greater than/ less than rules. I was merely describing the authors' conclusion - let me know if you want me to send you the PNAS paper. </p> <p>@Brandon: Thanks. I will keep it up, and hope you continue to enjoy reading.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2430686&amp;1=default&amp;2=en&amp;3=" token="QHjPIjGXcPVMe6OWUrnDG91fXIydb2ktcHPH79NcnIg"></drupal-render-placeholder> </div> <footer> <em>By <a title="View user profile." href="/author/neurophilosophy" lang="" about="/author/neurophilosophy" typeof="schema:Person" property="schema:name" datatype="">neurophilosophy</a> on 21 Jan 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2430686">#permalink</a></em> <article typeof="schema:Person" about="/author/neurophilosophy"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/author/neurophilosophy" hreflang="en"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2430687" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1264150845"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><blockquote><p><i>Significantly, the monkeys immediately applied the mathematical rules to all the stimuli pairs they wer shown</i></p></blockquote> <p> S/B "Significantly, the monkeys immediately applied the mathematical rules to all the stimuli pairs they <b>were</b> shown"</p> <p>Also, could you send me the paper? Thanks.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2430687&amp;1=default&amp;2=en&amp;3=" token="gNZpoTzz1yHeRDDrANRXURX1HFoMOnfGUo_y27et3PI"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://artksthoughts.blogspot.com" lang="" typeof="schema:Person" property="schema:name" datatype="">AK (not verified)</a> on 22 Jan 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2430687">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2430688" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1264177842"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>"More recently, it was found that monkeys can perform basic arithmetic on a par with college students. "</p> <p>This is misleadingly stated. The tasks involved are "approximate" addition of 1+1, 2+2, and 4+4 -- not exactly college level arithmetic.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2430688&amp;1=default&amp;2=en&amp;3=" token="tt484xpsYRZAaeoZ0FcPSKJJInzQz1mqJnFDkpKjdUQ"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">ianam (not verified)</span> on 22 Jan 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2430688">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2430689" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1264202644"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Interesting read. I wonder if the same part of the brain (same neurons, possibly) would be involved in a similar task but with a real-life application (such as the fruits in the bucket idea)? I'm always curious about these studies involving monkeys interacting with a screen.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2430689&amp;1=default&amp;2=en&amp;3=" token="w9nW1D1DRYsq34BOdF08fvamx1yHFnHEl5tHjGY7tG4"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://www.scientificchick.com" lang="" typeof="schema:Person" property="schema:name" datatype="">Scientific Chick (not verified)</a> on 22 Jan 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2430689">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> </section> <ul class="links inline list-inline"><li class="comment-forbidden"><a href="/user/login?destination=/neurophilosophy/2010/01/21/single-cells-in-the-monkey-brain-encode-abstract-mathematical-concepts%23comment-form">Log in</a> to post comments</li></ul> Thu, 21 Jan 2010 10:50:10 +0000 neurophilosophy 134731 at https://scienceblogs.com Sorry, Denise - but God didn't make numbers https://scienceblogs.com/goodmath/2009/10/19/sorry-denise-but-god-didnt-m <span>Sorry, Denise - but God didn&#039;t make numbers</span> <div class="field field--name-body field--type-text-with-summary field--label-hidden field--item"><p> I was planning on ignoring this one, but tons of readers have been writing<br /> to me about the latest inanity spouting from the keyboard of Discovery<br /> Institute's flunky, Denise O'Leary. </p> <p> Here's what she had to say:</p> <blockquote><p> Even though I am not a creationist by any reasonable definition,<br /> I sometimes get pegged as the local gap tooth creationist moron. (But then I<br /> don't have gaps in my teeth either. Check unretouched photos.)</p> <p>As the best gap tooth they could come up with, a local TV station interviewed<br /> me about "superstition" the other day.</p> <p> The issue turned out to be superstition related to numbers. Were they hoping<br /> I'd fall in?</p> <p>The skinny: Some local people want their house numbers changed because they<br /> feel the current number assignment is "unlucky."</p> <p> Look, guys, numbers here are assigned on a strict directional rota. If the<br /> number bugs you so much, move.</p> <p> Don't mess up the street directory for everyone else. Paramedics, fire chiefs,<br /> police chiefs, et cetera, might need a directory they can make sense of. You<br /> might be glad for that yourself one day.</p> <p> Anyway, I didn't get a chance to say this on the program so I will now: No<br /> numbers are evil or unlucky. All numbers are - in my view - created by God to<br /> march in a strict series or else a discoverable* series, and that is what<br /> makes mathematics possible. And mathematics is evidence for design, not<br /> superstition.</p> <p> The interview may never have aired. I tend to flub the gap-tooth creationist<br /> moron role, so interviews with me are often not aired.</p> <p> * I am thinking here of numbers like pi, that just go on and on and never<br /> shut up, but you can work with them anyway.(You just decide where you want<br /> to cut the mike.)</p> </blockquote> <!--more--><p> It's such concentrated stupidity, it's hard to know quite where to start. So<br /> how about we start at the beginning?</p> <p> Denise O'Leary claims <em>not</em> to be a creationist by "any reasonable<br /> definition"? Yeesh. No point even trying to argue with that. She's just playing<br /> the usual ID'ers games with the definition of "creationist".</p> <p> Then, very rapidly, we get the usual victimization rant. Poor, poor<br /> Denise. Such an unfortunate soul, so looked down on. I mean, she spews<br /> non-stop nonsense, and all she gets for it is a nice salary, lots of attention,<br /> a publishing contract, and some television interviews. Those IDers sure are<br /> put upon, aren't they?</p> <p> Then - <b>shock!</b> - she gets something <em>right</em>. The subject of<br /> the interview was goofy people who want their house numbers changed, because<br /> they think that they got unlucky numbers. Yeah, that's pretty stupid.<br /> Absolutely. </p> <p> It brings to mind an interesting story. Back when I was in college, my<br /> family had to move. My parents had taken out a ten-year renegotiable mortgage,<br /> and they couldn't afford the increased payments while also making the tuition<br /> bills for me and my brother. They ended up selling the house very quickly. But<br /> it was really strange. The people who bought it were Chinese, and they hated<br /> just about <em>everything</em> about the house. They hated the landscaping.<br /> They hated the kitchen. They hated the tiling. They hated the slate foyer.<br /> They hated the windows. They hated the parquet wood floors. They thought it<br /> was too big. Honestly, if there was anything that they actually <em>liked</em><br /> about the house, I don't know what it was. But they bought it. Because <em>it<br /> faced in the right direction</em>, and it was the only house facing exactly<br /> that direction on the market. Their feng shui master had told them that they<br /> <em>must</em> have a house that faced in that direction - that anything else<br /> would bring them terrible luck. So they bought it.</p> <p> People believe all sorts of strange things. There are all sorts of peculiar<br /> superstitions, about numbers, names, shapes, colors, directions. It's all silly.<br /> And it's amazing how many of us still hold on to those odd ideas, or at least<br /> the behaviors that they imply. To get personal, I know perfectly well that<br /> nothing I say is going to cause the world to turn on me and make something<br /> bad happen. But European Jews have a lot of superstitions about drawing attention<br /> to themselves, and I <em>never</em> say things like "Well, things couldn't<br /> possibly get any worse", or "Things are so great, I can't imagine how they could<br /> get better". Those are both statements that "draw attention". I know how stupid<br /> it is, but that doesn't change the feeling I get in the pit of my stomach when<br /> someone says something like that.</p> <p> So yeah, superstitions like that are silly, and they do deserve to be<br /> mocked. Mine included. But I'll bet you dollars to donuts that Denise wouldn't<br /> buy a house where a satanist had performed his phony rituals without getting<br /> it purified by a priest with holy water, and that she wouldn't see anything<br /> remotely silly about it. She sees <em>her</em> superstitions as legitimate,<br /> but others as mockable.</p> <p> ANyway, enough of that. Let's get to the good part.</p> <p> She says "No numbers are evil or unlucky. All numbers are - in my view -<br /> created by God to march in a strict series or else a discoverable* series, and<br /> that is what makes mathematics possible. And mathematics is evidence for<br /> design, not superstition."</p> <p> Oy, oy, oy.</p> <p> Numbers were not created by a supernatural being. No deity, no matter how<br /> powerful, could have created a universe where numbers didn't exist, or didn't<br /> work. </p> <p> This is a surprisingly difficult and subtle point. But numbers, in some<br /> sense, aren't <em>real</em>. They're purely conceptual. There's no such thing<br /> in the real universe as the number 2. There are plenty of examples of "two<br /> objects", but the number 2 doesn't exist. Far worse, there is absolutely no<br /> way of claiming that π really exists. There are no perfect circles in the<br /> universe. And the only sense in which π can possibly exist in the real<br /> universe is as a measurement. </p> <p> Numbers are an artifact of reasoning. They don't exist out there in the<br /> void, waiting for someone to find them. They're a consequence of a simple set<br /> of rules. And those rules <em>must</em> work. There's no way that God can<br /> change the nature of an abstraction that doesn't really exist. He could make<br /> it impossible for us to <em>conceive</em> of those rules. But the rules would<br /> <em>still</em> work. Even if there was <em>no universe at all</em>, those<br /> rules could still be said to exist, and therefore, that the numbers still<br /> exist.</p> <p> It comes down to a deceptively simple question: "What is a number?". And<br /> there is no single answer to that question! I can define numbers informally,<br /> by counting. I can formalize that a bit, and get two different kinds of<br /> numbers: ordinals and cardinals. I can formalize differently, and get surreal<br /> numbers. Still another way, I can start with different rules, and get Piano<br /> numbers. Or another way, and get computable numbers. I can define real<br /> numbers, complex numbers, vectors, quaternions. Those are all perfectly valid<br /> concepts - and they're all <em>different</em>. Which one <em>really</em><br /> defines numbers? All of them. None of them. Take your pick. Numbers are<br /> what you want them to be. They don't exist outside of your mind. They're a tool<br /> that we use to understand the universe - but they don't have any real,<br /> objective reality. </p> <p> But Denise's stupidity doesn't end there. She needs to qualify things - the<br /> numbers "all proceed in a strict series, or else a discoverable series".</p> <p> Bzzzt. Wrong. </p> <p> You can look at that statement in two ways. One way of looking at it - which<br /> I think is the one she meant - is just completely, utterly, wrong. The other way,<br /> which you could reasonably argue is the correct interpretation, is totally<br /> fouled up by that qualification.</p> <p><b>Interpretation one:</b></p> <p> <em>"The numbers all proceed in a strict series"</em>. My initial reading<br /> of this is that "series" implies a listing or enumeration of one number after<br /> another. </p> <p> The problem with this is that you can't put the real numbers into<br /> that kind of series. The real numbers are an uncountable set: you can't<br /> enumerate the elements of an uncountable set. So they can't possibly be<br /> put in a series.</p> <p> You could weasel out of that problem, by saying that the<br /> qualification solves the problem: you <em>can</em> enumerate the rational<br /> numbers: you can put them into a kind of series. Since she explicitly mentions<br /> numbers like π as being <em>exceptions</em>, you could argue that she meant<br /> that the rational numbers could be put into a series, and that the "discoverable<br /> series" qualification was meant to cover the irrational numbers. </p> <p> Alas, that doesn't work either. First, from her wording and description, I<br /> really don't think that when she said the numbers are in a strict series, that<br /> she had in mind an ordering where, for example, 2 comes before 1/3, and<br /> 1/3 comes before 1/100. But you can't enumerate the rationals in<br /> anything like comparison order, which is what I think she was trying<br /> to say.</p> <p> In addition to that point, I'd say that there's something seriously wrong<br /> with a definition where the <em>exception</em> covers the overwhelming<br /> majority of cases. Most numbers are irrational - but her phrasing implies that<br /> the irrationals are sort-of strange exceptions.</p> <p> But I left the worse for last. As I've mentioned before, <em><a></a> href="http://scienceblogs.com/goodmath/2009/05/you_cant_write_that_number_in.php"&gt;most<br /> numbers are undescribable</em>. You can't discover them. You can't<br /> describe them. You can't name them. You can't point at them. And yet, by the<br /> definition of real numbers, they <em>must</em> exist. So even forgetting about<br /> the whole ordering issue, the idea of all numbers being discoverable, is just<br /> totally <em>wrong</em>. They're not. Numbers are much stranger, much less<br /> rational, less intuitively comprehensible, less well-behaved than her naive<br /> understanding.</p> <p><b>Interpretation Two</b></p> <p> The second interpretation is that "the numbers all proceed in a strict series" is a poorly<br /> phrased way of saying that the real numbers are <em>totally ordered</em>. <em>That</em> is a fact:<br /> given any two distinct real numbers X and Y, either X&lt;Y or Y&lt;X. That's correct. But if<br /> that's what she meant, then she blew herself out of the water with the qualification: because<br /> irrational numbers like π are <em>still</em> part of the total ordering of the real numbers.<br /> Pulling them out by that qualifier implies that she doesn't believe that they're part of<br /> the series - which in this interpretation means that you can't always compare them. But even given<br /> two irrational numbers, they're always comparable. Even the undescribables.</p> <p> And the qualification <em>still</em> fails exactly the same way it did in case one: most<br /> numbers <em>aren't</em> discoverable, describable, nameable, identifyable, or enumerable.</p> <p> So again, she fails miserably. </p> <p> The takeaway point here is that numbers are both less real, much stranger,<br /> and frankly a whole lot more interesting than Denise O'Leary imagines. As<br /> usual for Creationists (and yes, Denise, you <em>are</em> a creationist!),<br /> she's taken a simplistic understanding of something, mistaken her simplistic<br /> understanding for a deep comprehension of it, and then argued that on the<br /> basis of its alleged simplicity that it must have been designed by her deity.</p> <p> Her version of numbers can't account for undescribable numbers. It can't<br /> account for much of the beautiful strangeness of numbers. It can't account for<br /> logical wierdness like Gödel's incompleteness theorem, which relies on the<br /> logical structure of numbers. It can't account for some of the magnificent strangeness<br /> that people like Greg Chaitin have studied. As is all too common, she's so satisfied<br /> with her simplifications that she's completely missed both the pathology and the beauty<br /> of numbers. It's sad.</p> <p> It should be obvious, looking at this blog, that I'm deeply in love with<br /> mathematics. Math is beautiful, and fascinating, and frustrating, and strange.<br /> People like Denise O'Leary try to sap out everything that makes it wonderful<br /> in order to be able to say that they understand it, and that their personal<br /> deity created it. God didn't create math. Math is a collection of formalisms<br /> that <em>we</em> created from the basic rules of logic - and those rules<br /> <em>must</em> hold, no matter what the universe is like. Because they aren't<br /> rules about the universe - they're self-contained rules about concepts that<br /> they describe.</p> <p> If you're religious like me, you might believe that there is some deity that<br /> created the Universe. Or you might not. But whether there is a God or not has nothing<br /> to do with whether A∧¬A == false.</p> </div> <span><a title="View user profile." href="/goodmath" lang="" about="/goodmath" typeof="schema:Person" property="schema:name" datatype="">goodmath</a></span> <span>Mon, 10/19/2009 - 09:54</span> <div class="field field--name-field-blog-tags field--type-entity-reference field--label-inline"> <div class="field--label">Tags</div> <div class="field--items"> <div class="field--item"><a href="/tag/debunking-creationism" hreflang="en">Debunking Creationism</a></div> <div class="field--item"><a href="/tag/numbers" hreflang="en">numbers</a></div> </div> </div> <section> <article data-comment-user-id="0" id="comment-2126019" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1255962159"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>This reminds me of your post over a year ago and 'i' or 'j' or square root of -1. My math prof would go on an extended rant about the term 'real' numbers versus 'imaginary'. He did it so often I swear I've almost got it memorized. </p> <p>There is no such thing as a Real number he'd insist. Go out in your back yard and dig up a 2. and so on and so on ...</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126019&amp;1=default&amp;2=en&amp;3=" token="Vn8zjL8Vk8hbmvD3pzWShsoDVObPLb1aYpCypd0cAjU"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">rmp (not verified)</span> on 19 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126019">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126020" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1255962180"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>I thought she meant the integers, myself...</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126020&amp;1=default&amp;2=en&amp;3=" token="sxHREAsvYgYx8rJdDWpkLMJNinh6ZhZfBMIe4y8ocC8"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Jake (not verified)</span> on 19 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126020">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126021" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1255962511"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>re Interpretation 1: Reals are at least orderable; complex numbers are just as valid as reals and they can't even be ordered.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126021&amp;1=default&amp;2=en&amp;3=" token="_k8s3GzQhLudPnrvg41zi6OkZwhRwFfdk-eRo-oUGRA"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Ben (not verified)</span> on 19 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126021">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126022" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1255962696"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>More like only "Natural" numbers, right? ;)</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126022&amp;1=default&amp;2=en&amp;3=" token="EoX4P-Am21rAHLiBmyT-APOJeQqbBJVFKgDPqIkFxhA"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://amhill.net" lang="" typeof="schema:Person" property="schema:name" datatype="">Aaron (not verified)</a> on 19 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126022">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126023" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1255963446"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Re: rmp</p> <p>I figure as long as you're going to count the real numbers as "numbers" there's really no reason to leave out the complex numbers. I mean, for most practical purposes you only really need the rationals anyway (you can approximate pi as closely as you want with rationals). If you are going to count the reals, then why stop there? The complex numbers lack only one property that the reals have, which is an ordering that plays nice with the field axioms, and they have many more properties that are highly useful, such as being algebraically closed. Not to mention that the complex numbers are themselves capable of describing certain real-world phenomena.</p> <p>Of course, I'm not saying we should stop at the complex numbers either. My general feeling is that if you want to define "numbers", you need to decide first of all which axioms, structures, or properties you'd like "numbers" to have and go from there.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126023&amp;1=default&amp;2=en&amp;3=" token="CvGWtYdV4qFOuiizaoNQKkjxrE78FC9onzNbyrhw5xI"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://intrinsicallyknotted.wordpress.com" lang="" typeof="schema:Person" property="schema:name" datatype="">Susan B. (not verified)</a> on 19 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126023">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="138" id="comment-2126024" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1255963764"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>@2:</p> <p>She couldn't have meant integers: she explicitly mentions π. So she's got to be including rationals and irrationals.</p> <p>But the point is, she thinks that there's a collection of <em>things</em> called numbers, and that they've got some kind of objective existence. But in reality, numbers are what we say they are; and we typically use the word "numbers" to mean lots of different things - and depending on what we mean, we're talking about totally different things. Are we talking about cardinal numbers? Are we talking about complex numbers? Computable numbers? Surreal numbers? Real numbers? Peano numbers?</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126024&amp;1=default&amp;2=en&amp;3=" token="PTkNEMsVT0MB0pJmnlwC9AZqMOpkR6PD_37voEUBVlY"></drupal-render-placeholder> </div> <footer> <em>By <a title="View user profile." href="/goodmath" lang="" about="/goodmath" typeof="schema:Person" property="schema:name" datatype="">goodmath</a> on 19 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126024">#permalink</a></em> <article typeof="schema:Person" about="/goodmath"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/goodmath" hreflang="en"><img src="/files/styles/thumbnail/public/pictures/markcc.jpg?itok=PmLQEFZp" width="92" height="100" alt="Profile picture for user goodmath" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126025" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1255964014"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>She's probably talking about Humpty Dumpty numbers. They have whatever properties the creationist in question wants them to have, no more, no less.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126025&amp;1=default&amp;2=en&amp;3=" token="D0Dchv_bAr72ox5xSYEe0XCMDy7ReEPbHqn1AWJsfVc"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Hank (not verified)</span> on 19 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126025">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126026" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1255964082"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Why would you consider someone stupid for not believing your interpretation of a "a surprisingly difficult and subtle point"?</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126026&amp;1=default&amp;2=en&amp;3=" token="_9DixXX3dudBvrUakKicYpPujA44wLT4Yah0F9arhPg"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Peter (not verified)</span> on 19 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126026">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126027" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1255964290"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>I actually feel that the only good evidence for the universe being anything more than the observable facts is the fact that our ape brains have conceived of this system we call 'mathematics' which appears to describe the universe extremely well at scales which our brain never evolved to comprehend (conceived without us intentionally trying for this end - the theory of ODEs et cetera predates by far general relativity and quantum theory). That's not what she said, but it's in the same kind of vein.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126027&amp;1=default&amp;2=en&amp;3=" token="GUmHmPFbpRxpdY9Z3k84mObUxTxYq7XEZ3-BICdTt3c"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">CJ (not verified)</span> on 19 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126027">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126028" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1255964332"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>I thought the standard line was "God created the natural numbers, all the rest is the work of man."</p> <p>(Not proposed as a contention with anything MCC says, it just seems obligatory to mention it in this discussion.)</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126028&amp;1=default&amp;2=en&amp;3=" token="_1DMyOIsNbqiSeG9VTUERMOgQ61PFmw5tlR1gJHjchQ"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">zingle (not verified)</span> on 19 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126028">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126029" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1255964339"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>I think it's unnecessary to rant at her lack of understanding of number theory; the secondary point she was making (which is far more interesting to rant about) is that she believes that mathematics <i>the concept</i> is necessarily a product of design, not "superstition".</p> <p>Based on your response I think you'd agree with her there, in that mathematics is not defined by the universe, even as it makes use of the same. Math is just a natural consequence of logic, and it is a "designed" construction. Of course Denise thinks that an invisible old man did the designing and intelligent people think that various animal intelligences do the designing (at different levels of proficiency and formalization).</p> <p>The universe doesn't anthropomorphically <i>need</i> a definition of real numbers in order to operate but we humans find that a definition of real numbers is key to understanding the universe and describing its operation.</p> <p>Anyway, I'm not sure that Denise was wildly off the wall here. Of course her mathematics is faulty, but she's not a mathematician and the specifics weren't crucial to her point.</p> <p>As for her claiming she wouldn't fall into a superstition trap... well, who wants to bet she wouldn't accept a hip replacement with serial number 666?</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126029&amp;1=default&amp;2=en&amp;3=" token="chl08QRoPpD73e6zNJpjr_107YjLMKQhgP9GvKyXoKU"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Nate (not verified)</span> on 19 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126029">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126030" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1255964368"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Obviously she doesn't know what she's talking about, but as Leopold Kronecker said: "God made the integers; all else is the work of man" (not that I happen to agree, since I don't believe in God)</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126030&amp;1=default&amp;2=en&amp;3=" token="zVSu7tIOhbKhV2d0IOZWrvY8s2lpbuBQw0hSu-ObT9Y"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">eee (not verified)</span> on 19 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126030">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="138" id="comment-2126031" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1255964581"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>@8:</p> <p>I thought I was very clear about that.</p> <p>She's got an incredibly shallow and simplistic concept of numbers. But that shallow and simplistic understanding fits what she *wants* to believe - and so she doesn't look any farther. </p> <p>In particular, she wrote her babble it as part of a rant about how people stupid were for attaching superstitious meaning to numbers, while simultaneous attaching her own superstitious meaning to numbers, and proclaiming that her superstitious meaning is a demonstration of how smart she is, compared to the gap-toothed morons.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126031&amp;1=default&amp;2=en&amp;3=" token="hAAnqWZ3KM6-_qfkmLOAKbYeZjYtBY6GWfMe4u5MbUk"></drupal-render-placeholder> </div> <footer> <em>By <a title="View user profile." href="/goodmath" lang="" about="/goodmath" typeof="schema:Person" property="schema:name" datatype="">goodmath</a> on 19 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126031">#permalink</a></em> <article typeof="schema:Person" about="/goodmath"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/goodmath" hreflang="en"><img src="/files/styles/thumbnail/public/pictures/markcc.jpg?itok=PmLQEFZp" width="92" height="100" alt="Profile picture for user goodmath" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126032" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1255964683"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><blockquote><p>I am thinking here of numbers like pi, that just go on and on and never shut up, but you can work with them anyway.(You just decide where you want to cut the mike.) </p></blockquote> <p>Speaking of the number 2 I think that this is the age of her target audience judging by her description of an irrational number.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126032&amp;1=default&amp;2=en&amp;3=" token="9KLGlM9afH9Nt6ancRH-tJniLLxtwygPGFDgKOZ_20Y"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Doug Little (not verified)</span> on 19 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126032">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126033" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1255964799"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Because that same "subtle point" holds for the existence of any human thought, especially mathematical concepts.</p> <p>Just because they are encoded in the firing patterns of neurons, and in the patterns of language, doesn't mean that they exist.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126033&amp;1=default&amp;2=en&amp;3=" token="K-9Z7To6f25L-5tEkIOD9NdqK4Hpy-DpeaaHU2NtgAQ"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">rpenner (not verified)</span> on 19 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126033">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126034" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1255964919"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>I kept thinking about this quote: "God made the integers; all else is the work of man" by Leopold Kronecker. If you take out the last paragraph concerning Pi, then it reads more plausible. No?</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126034&amp;1=default&amp;2=en&amp;3=" token="SIADPq2L__QYYBLWjbO91T_np2uWRT3eUWZBhJ1Lmfw"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://mwan.blogspot.com" lang="" typeof="schema:Person" property="schema:name" datatype="">Mark W (not verified)</a> on 19 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126034">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126035" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1255965193"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Interesting. You espouse a strong antiplatonist stance. But even Kronecker said that God created the integers.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126035&amp;1=default&amp;2=en&amp;3=" token="L_1BjGQqE65Qww6iaupDOT5ll8DUvyJeNqmo9PnIIeI"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://unapologetic.wordpress.com/" lang="" typeof="schema:Person" property="schema:name" datatype="">John Armstrong (not verified)</a> on 19 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126035">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126036" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1255965298"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Mathematicians treat the natural numbers as if they exist independently from humans in the sense that the naturals have properties that humans can discover, but humans cannot define or change the properties.</p> <p>All other numbers and the operations performed on those numbers are defined by humans.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126036&amp;1=default&amp;2=en&amp;3=" token="LAlUjkpXfi7lMpxWP439iaaVbK3zu-pD4v-eyBk-eJk"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Robert (not verified)</span> on 19 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126036">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126037" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1255966892"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>I think mathematicians often say that "God" created the numbers more as a shorthand way of saying that human being didn't create them; that they have an existence independent of us. (Denyse probably intended the stronger statement, though.)</p> <p>Mark, I think that her sentence makes marginally better sense if you just insert a comma in the middle: "All numbers are - in my view - created by God to march in a strict series[,] or else a discoverable* series." I read the first half as referring to the integers, and then the second half brings in the rationals and irrationals, such as pi.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126037&amp;1=default&amp;2=en&amp;3=" token="kPGmkAMLnJ951XeZnzSVTManleJt4KtCMPfiCHYztgg"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Brian (not verified)</span> on 19 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126037">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126038" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1255967104"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>I'm not sure I agree with your take here. I agree that numbers aren't the work of a deity that the descriptor given by O'Leary is once again wrong. But it isn't an egregiously wrong position. Indeed, it isn't clear to me what it would mean for a universe to exist with different numbers. But that's connected to the issue that I can't conceive of a universe where basic logic worked differently. But that's not to say that it couldn't exist in some sense. The general human inability to conceive of something is not a priori a reason to assert its non-existence.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126038&amp;1=default&amp;2=en&amp;3=" token="eL3t5UhlG1hTdjEOuLzllRFMqfZiMDNo3MScrMHWsGE"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://religionsetspolitics.blogspot.com" lang="" typeof="schema:Person" property="schema:name" datatype="">Joshua Zellinsky (not verified)</a> on 19 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126038">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126039" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1255967847"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>A lot of very serious mathematicians, past and present, would disagree with you strongly. (Among them Paul Erdös, if <a href="http://en.wikipedia.org/wiki/Philosophy_of_mathematics#Mathematical_realism">Wikipedia</a> can be believed.)</p> <p>You seem to have stepped into one of the longest-running debates in the philosophy of mathematics without even realizing it (?).</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126039&amp;1=default&amp;2=en&amp;3=" token="ecSJZY9cdb9_Vaf4is54QBJMaPD1M_XM5tz2xVp1IDw"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="https://self-evident.org/" lang="" typeof="schema:Person" property="schema:name" datatype="">Nemo (not verified)</a> on 19 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126039">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126040" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1255968330"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>I get that argument all the time, that numbers have some kind of existence by themselves. The people arguing can't seem to grasp that the number 2 would not exist without people. There would be "2" objects, but unless there was other intelligent life to put words to the concept of "x number of objects," there wouldn't be any number 2. The same with arguments for other concepts. I think it usually comes down to some Platonic ideal or else the idea of "well, God exists, therefore His mind has the number 2 in it, so it has an existence" (or something - the argument never made sense to me, so I'm probably not giving it properly).</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126040&amp;1=default&amp;2=en&amp;3=" token="U8xoTDRleMeHUzntVa9zpuZb1ysM1CILWFdMo3DbtJs"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Badger3k (not verified)</span> on 19 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126040">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126041" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1255971243"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Nice article, small nit though. I'm guessing you didn't mean "piano numbers" but "peano numbers".</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126041&amp;1=default&amp;2=en&amp;3=" token="A5sDjZFZww7c7vzmWLIjEgGrjPHzF2NpUQbIEtI8P3k"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://steamcode.blogspot.com/" lang="" typeof="schema:Person" property="schema:name" datatype="">Scott LaBounty (not verified)</a> on 19 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126041">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126042" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1255971625"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Also, isn't the woman's name <i>Denyse</i> O'Leary?</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126042&amp;1=default&amp;2=en&amp;3=" token="xh7i1XGGF2eF1pG8nDEBzhpLXAASUIgmaMLpMwiVphc"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Nobody Important (not verified)</span> on 19 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126042">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126043" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1255971719"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>While I have no problems with you making fun of Denise, Nemo is right. You've stepped into a serious debate and taken sides, and you've represented your side as obvious truth without even a mention of those who disagree with you (such as Godel, for example). Whether or not numbers exist is a philosophical question most mathematicians don't care about.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126043&amp;1=default&amp;2=en&amp;3=" token="k1hy4RphMsWBPnpFZnHO374zNKJMO1V7k2gNgvqgxn0"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Scott (not verified)</span> on 19 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126043">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126044" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1255973113"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>The use of numbers for counting is a human abstraction. But the natural numbers had properties that existed before humans discovered their use for counting.</p> <p>For example:</p> <p>1 + 2 = 2 + 1</p> <p>is a property of positive integers that humans discovered, humans did not invent it.</p> <p>That's what they mean by "independent existence."</p> <p>On the other hand, negative numbers did not have properties before humans defined them. There is nothing in nature to tell us:</p> <p>-1 X -1 = +1</p> <p>That is a rule of a human-defined operation that does not exist independent of humans.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126044&amp;1=default&amp;2=en&amp;3=" token="n051nawJpEvV_QfeEBegAvZJGnY4iVWlIlywHzG4vwU"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Robert (not verified)</span> on 19 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126044">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126045" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1255973228"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Of course it is crazy to say that Ï exists as a physical object in nature, any more than buildings or bees or blogs. None of these things are terms in the fundamental laws of physics. (Well, except Ï.)</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126045&amp;1=default&amp;2=en&amp;3=" token="odUIYliyd6glvJP_SgG3hmjcaQmslANJgXbMVmxI740"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://jorendorff.blogspot.com/" lang="" typeof="schema:Person" property="schema:name" datatype="">Jason Orendorff (not verified)</a> on 19 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126045">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126046" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1255977665"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Yeah man, but the equivalence class of things that can be put in one-to-one correspondence with the set {1,2} always <i>existed</i> before any human beings or other intelligent animals came along and thought about it or made such correspondences themselves.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126046&amp;1=default&amp;2=en&amp;3=" token="stmm0VXnaILbujPbJ7KtUS8GRwgeb0kLYvl8q2ldQhc"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">zingle (not verified)</span> on 19 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126046">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126047" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1255977840"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>I've enjoyed your blog for quite some time, but the past few posts have been nothing more than bile. I completely agree with your position, but I miss the "Good Math" half of the title. Best of luck.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126047&amp;1=default&amp;2=en&amp;3=" token="Rbnq6JVHdIOd-VfZgBdsiyR6HckMImoJr94vk_EJ_Nk"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://adventuresinsoftware.com" lang="" typeof="schema:Person" property="schema:name" datatype="">Michael L Perry (not verified)</a> on 19 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126047">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126048" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1255981311"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Are you ever going to write again about things we actually care about, or are you going to rename the site to "Good Religion, Bad Religion?"</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126048&amp;1=default&amp;2=en&amp;3=" token="JAL3sGCjd13E3Pd-0-TwNn8588HAMyIzf-sSlZogrGc"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://www.blueraja.com/blog" lang="" typeof="schema:Person" property="schema:name" datatype="">BlueRaja (not verified)</a> on 19 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126048">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126049" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1255982906"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Um, @26, I always thought that 1 + 2 = 2 + 1 because the operation '+' over the set of 'integers' is defined that way. By humans. It's an axiom, not a discovery. And that -1 x -1 = +1 is also axiomatic. As in: define binary operator '-' by the set of relations {.x.=., .x-=-, -x.=-, -x-=+} where '.' is the absence of - (sometimes for convenience we use '+' instead of '.', but with the same absence meaning).</p> <p>Associating the set of integers ordered by the '&lt;' operator with some arbitrary set of real world objects is also a human invention. A very old one too, since it made the difference between being rich or poor back in the very old days. Though the '&lt;' way of describing those sets is relatively new. Again, though, naming the members of such a set required the human invention of names for human abstractions of thingness as distinct from specific bricks. 'two-ness' does not exist outside of human invention, and is never a property of real objects, only of human to human communications about real objects.</p> <p>In fact, I might be able to make a case that all mathematics is about communication, be it between humans or between myself and a future version of myself. It is about describing a certain class of concepts, and what is description if not communication. And communication of abstractions between humans is obviously (I hope obviously) a human invention.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126049&amp;1=default&amp;2=en&amp;3=" token="SVQ3rxO9WVIVMcL43dDL5ZbsxW7bk_aK43nZJOVYMGE"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Gray Gaffer (not verified)</span> on 19 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126049">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126050" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1255985221"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>@31</p> <p>I'm trying to follow Courant and Robbins "What is Mathematics?"</p> <p>The lowest level of abstraction is to start with natural numbers representing concrete objects and combine them by addition and multiplication the way you would take objects in boxes and combine them physically. That's the level where you make discoveries such as the commutative laws.</p> <p>My understanding is that this level represents the first part of the famous Kronecker quote. When you go beyond natural numbers, and the addition and multiplication of them as if they were concrete objects, is when you get to Kronecker's "everything else."</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126050&amp;1=default&amp;2=en&amp;3=" token="9qEc2wzFcEfWDhEa5C1NTna0LsHUREHXQDJBVV0w234"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Anonymous (not verified)</span> on 19 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126050">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126051" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1255989650"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>I am corrently reading Lee Smolin - The Life of the Cosmos in which he contends that even the most basic logic is contingent on the universe having enough stucture in it to make a distinction between thing and not thing, let alone have entities capable of making such distinctions.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126051&amp;1=default&amp;2=en&amp;3=" token="51eUY-vu_CitA2OvuRfuyAgafwP5PMoAVVFoqdnbHqM"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">eddie (not verified)</span> on 19 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126051">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126052" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1255990447"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>At first that seems to lead to a circular argument that (simplified) complex structure needs logic needs complex structure. The conclusion is that the universe *doesn't* need logic, maths, physics to work. It just works, and logic is totally man made. I think Erdös, Kroenecker et al lose this round.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126052&amp;1=default&amp;2=en&amp;3=" token="T2-pW3naUD7SdGPl9FQlyRYdWbWXWCJ4Jwxz7qSfSog"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">eddie (not verified)</span> on 19 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126052">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126053" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1256004626"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>@ 18,</p> <blockquote><p> Mathematicians treat the natural numbers as if they exist independently from humans in the sense that the naturals have properties that humans can discover, but humans cannot define or change the properties.</p> <p>All other numbers and the operations performed on those numbers are defined by humans. </p></blockquote> <p>No, really, we* don't. Mostly, we don't think about it too much at all, but if we do, the natural numbers are just a particular algebraic structure. You can assert them as primary, or you can choose different foundations (sets, functions, successor operations, categories, etc). Really, whatever comes in handy at the time.</p> <p>Clearly, the counting numbers have a special place in all our hearts, but a lot of that is just that counting numbers are the ones which we learn first as children, are embedded in our everyday language, and have especially simple physical analogs.</p> <p>Put another way: we might think natural numbers are special, but math doesn't**.</p> <p>* full disclosure: not yet a licensed mathematician, in training.<br /> ** illustrative metaphor: not approved for literal use.<br /> ---</p> <p>@29,</p> <p>What's your problem with Mark's enchiladas?</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126053&amp;1=default&amp;2=en&amp;3=" token="S9CY8zfz11kTHi-36mHKFKbd1ehWVBd6v9Dh562tN0k"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">MPL (not verified)</span> on 19 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126053">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126054" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1256004827"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>"But whether there is a God or not has nothing to do with whether Aâ§Â¬A == false."</p> <p>To be honest, the only way I would be able to imagine an all-powerful god is if he were somehow able to set Aâ§Â¬A == true. If he were somehow more powerful than the laws of logic. Sometimes I think that's what most religious people think too (if they thought hard enough about it) considering the huge amount of contradictions they believe in. God would be truly all powerful if he were able to bend the rules of logic in such a way that numbers, such as we think of them, come out to be a logical result from the axioms we chose.</p> <p>Of course, if one believes god is more powerful than logic, no amount of reasoning is going to have any effect.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126054&amp;1=default&amp;2=en&amp;3=" token="Ey72_NGcCpi-H4VdQrW4bc3h_5jt1NJq0XQZUEBOQko"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Robert (not verified)</span> on 19 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126054">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126055" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1256004896"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Aâ§Â¬A == false</p> <p>Did God create logic? If you're denying Platonism, why not go even further and look into paraconsistent logic?</p> <p>You might not like it, but I guess a large percentage of mathematicians has certain Platonist beliefs (though maybe secretly or unconsciously). This has probably partly to do with the fact that many of the really abstract objects that were invented (discovered?) throughout the centuries, first based on things happening in nature, but later purely based on other mathematics, turn out to be useful in describing nature.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126055&amp;1=default&amp;2=en&amp;3=" token="1waMmQA-Azr_quby-dnA0zAKGhpk-p_Nog-iSrBKIbY"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Jan (not verified)</span> on 19 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126055">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126056" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1256005955"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>In Carl Sagan's novel "Contact", the extra-terrestial civilizations have a belief in a god that is able to define pi with a sequence of digits (in base 2, but I don't think that is explicitly mentioned), millions of digits into the expansion, that form a rectangle (with primes as the lengths of its sides, of course) of mostly zeros, with a few 1 bits, which when looked at form a circle! The atheistic heroine of the book eventually finds this sequence, and that's how the book ends.</p> <p>I like this idea, and I seem to remember, that if you look long enough at the binary/decimal expansion of pi, that eventually, you will see any given sequence of digits you desire. Is that true? Or is it an unanswerable question?</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126056&amp;1=default&amp;2=en&amp;3=" token="eWSg2NfjncTJE3UE1KOZrcsGduuc-8LDDjfB67ZRuNg"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Jonathan O&#039;Connor (not verified)</span> on 19 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126056">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126057" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1256009118"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>"Far worse, there is absolutely no way of claiming that Ï really exists. There are no perfect circles in the universe. And the only sense in which Ï can possibly exist in the real universe is as a measurement."</p> <p>If I can be allowed a little nit-picking here:<br /> I disagree... not because there are no perfect circles, but because there are no perfect measurements. Measure the length of a circle (with radius = 1) with the best instruments, and all you'll get is a number with many decimals, perhaps, but not an infinity of them. It will only be a rational approximation of Ï. I'd say that "the only sense in which Ï can possibly exist in the real universe" is as a limit: if you can improve indefinitely the quality of your measurements, you'll get ever closer to it. You're right, it's a concept and nothing else.</p> <p>Some people really are clueless about maths. (And biology, too...)</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126057&amp;1=default&amp;2=en&amp;3=" token="b3mqNy2P_MqdTrWlgolJZzkrEqgfOfgUgrH47zbuXvg"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Christophe Thill (not verified)</span> on 19 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126057">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126058" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1256009530"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>#38: damn, i just wanted to mention it (i mean 'Contact' by Sagan). btw, it ruined the book for me, and i cannot understand, what Sagan wanted with it. i'm pretty sure that pi is not something for which you can just decide a value, and then create a world, where pi has that specific value. pi "is the ratio of any circle's circumference to its diameter in Euclidean space" (from the wiki), and it is so, no matter what kind of world you are living in.</p> <p>of course i'm open to any proof to the contrary, but i won't hold my breath.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126058&amp;1=default&amp;2=en&amp;3=" token="61N9TlkHZ-NXgcG40Nedcx-foXRUFyJW-Vw43YQFBrc"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">wice (not verified)</span> on 19 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126058">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126059" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1256011635"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Yes, as Scott asked, what's with the Piano numbers? Are there only 88 of them, counted in base 13? :-)</p> <p>More on topic, Denyse is seriously confused about a lot of things. This just adds to the list.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126059&amp;1=default&amp;2=en&amp;3=" token="GW2nuk-nxEBHLmybuQtSy1gBokRj6jaJf7mECitCWug"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://network.nature.com/people/boboh/blog" lang="" typeof="schema:Person" property="schema:name" datatype="">Bob O&#039;H (not verified)</a> on 20 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126059">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="138" id="comment-2126060" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1256019710"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>@39:</p> <p>Where are you going to find a perfect circle to measure?</p> <p>In our universe, there's no such thing as a perfect circle. Even if you had infinitely precise measuring tools, there's nothing that you could measure that would produce exactly π.<br /> It exists only as a mathematical formalism. It's an valuable mathematical formalism which describes lots of interesting and important things. But nowhere in the universe can you find anything whose value is π.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126060&amp;1=default&amp;2=en&amp;3=" token="8jbmdhHENKNHnVn1BCqxVp9brjb7mjFlusih-MQE6PA"></drupal-render-placeholder> </div> <footer> <em>By <a title="View user profile." href="/goodmath" lang="" about="/goodmath" typeof="schema:Person" property="schema:name" datatype="">goodmath</a> on 20 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126060">#permalink</a></em> <article typeof="schema:Person" about="/goodmath"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/goodmath" hreflang="en"><img src="/files/styles/thumbnail/public/pictures/markcc.jpg?itok=PmLQEFZp" width="92" height="100" alt="Profile picture for user goodmath" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="138" id="comment-2126061" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1256020437"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>@38:</p> <p>I really, <em>really</em> hated the end of Contact.</p> <p>There are tons of constants in the universe that are, in some sense, variable. They're properties of the shape or structure of the universe. If Sagan wanted to have a message from God encoded in the universe, it would be easy enough to do it - the ratio of masses of the fundamental particles, or the value of the cosmological constant for two examples. But instead, he chose a value which <em>can't</em> be changed or shaped.</p> <p>Hell, he could even have used the value of a <em>measured</em> π - if space isn't completely flat (and it isn't), then the measured value of π would vary slightly from the value of the theoretical π. </p> <p>But being a physicist, he knew that even with the best imaginable instruments, measurements have a small number of significant digits. You just can't get the thousands and thousands of digits that he needed for his story. </p> <p>So rather that doing bad physics, he did bad math. It pissed me off.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126061&amp;1=default&amp;2=en&amp;3=" token="7qOiAtNBqjI3jCzaEm-5kw8HrLEBe8NPimdW87zMKWQ"></drupal-render-placeholder> </div> <footer> <em>By <a title="View user profile." href="/goodmath" lang="" about="/goodmath" typeof="schema:Person" property="schema:name" datatype="">goodmath</a> on 20 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126061">#permalink</a></em> <article typeof="schema:Person" about="/goodmath"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/goodmath" hreflang="en"><img src="/files/styles/thumbnail/public/pictures/markcc.jpg?itok=PmLQEFZp" width="92" height="100" alt="Profile picture for user goodmath" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126062" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1256027751"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><blockquote><p>There is nothing in nature to tell us:</p></blockquote> <blockquote><p>-1 X -1 = +1</p></blockquote> <p>Really? If I reverse the operation of taking one object away (do "negative one," "negative one" times), isn't that adding one object ("positive one")?</p> <p>Mark: <i>Denise wouldn't buy a house where a satanist had performed his phony rituals without getting it purified by a priest with holy water, and...she wouldn't see anything remotely silly about it. She sees her superstitions as legitimate, but others as mockable.</i></p> <p>So how do you feel about mezuzot? Legitimate or mockable? Legitimate for you, OK to mock for others?</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126062&amp;1=default&amp;2=en&amp;3=" token="FhjOQr2h7KJvb1vM7FuSPIYRb3Q5roiSDB6kY_nmaGI"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Jud (not verified)</span> on 20 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126062">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126063" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1256028094"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>I wrote: <i>So how do you feel about mezuzot? Legitimate or mockable? Legitimate for you, OK to mock for others?</i></p> <p>That reads on the page as more hostile and challenging than I intended it to be. I am actually sincerely curious as to the answer, if you'd care to share it.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126063&amp;1=default&amp;2=en&amp;3=" token="U6m5_4_DddZlTm6qoxDXi1uQC_IE8aRWfZMjx67znHk"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Jud (not verified)</span> on 20 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126063">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126064" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1256028398"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>"I like this idea, and I seem to remember, that if you look long enough at the binary/decimal expansion of pi, that eventually, you will see any given sequence of digits you desire. Is that true? Or is it an unanswerable question?"</p> <p>It's an open question. Most mathematicians think it's true for a number of good reasons, but so far no dice in terms of proof. The formal question is whether pi is a <a href="http://en.wikipedia.org/wiki/Normal_number">normal number</a>.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126064&amp;1=default&amp;2=en&amp;3=" token="3ls7UCRrzvpx_Yann9u3sDbmc4T_ZxM8DJrtLxEAkT4"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://scienceblogs.com/builtonfacts" lang="" typeof="schema:Person" property="schema:name" datatype="">Matt Springer (not verified)</a> on 20 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126064">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="138" id="comment-2126065" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1256029016"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>@45:</p> <p>How do I feel about mezuzot? That depends on what the person who hangs them thinks.</p> <p>Some people hang them because they believe that they're lucky. I think that's stupid and mockable. Thinking that hanging a little scroll of paper in your doorway is going to make good things happen to you, and neglecting to hang one is going to make bad things happen? That's every bit as silly as insisting on buying a house that faces 5 degrees west of north, or refusing to buy a house whose address is #13.</p> <p>Some people hang mezuzot because it's a reminder. Jews believe that there are rules that you should follow - not because following the rules is going to make anything good happen, but because following the rules is the right thing to do. Mezuzot are a visible reminder of those rules - and you see that reminder every time you enter or leave a home with the mezuzah on the doorpost.</p> <p>I'm in the second group. I see the mezuzah as something to make me think about what's right, and what's wrong, and what I should be doing.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126065&amp;1=default&amp;2=en&amp;3=" token="9xBtoTpoxTURbx-2bTc8_iaGuY1EselrCN34fMSw468"></drupal-render-placeholder> </div> <footer> <em>By <a title="View user profile." href="/goodmath" lang="" about="/goodmath" typeof="schema:Person" property="schema:name" datatype="">goodmath</a> on 20 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126065">#permalink</a></em> <article typeof="schema:Person" about="/goodmath"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/goodmath" hreflang="en"><img src="/files/styles/thumbnail/public/pictures/markcc.jpg?itok=PmLQEFZp" width="92" height="100" alt="Profile picture for user goodmath" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126066" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1256037095"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>@38</p> <p>I think you can take some convergent infinite series , you can reorder the terms of that infinite series to converge to another set value. So if I have an infinite series which converges to Pi, I could take the numbers which define the series and reorder them to instead converge to e (or 1 or 2 or any number).</p> <p>I think the criteria for that reordering is if it is an infinite convergent alternating series... though that might be too strict a condition. I think the question is whether it is still the same series after you reorder the terms which depends on whether or not its uniformly convergent. I could be wrong, I'm going off of memory.</p> <p>Sorry if that's off topic, that's what I thought of when I saw your post.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126066&amp;1=default&amp;2=en&amp;3=" token="Hbm_5O7FGfNLqEielo_WgTPb6mhc0XPV5dkMlMcp-fE"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Nelson (not verified)</span> on 20 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126066">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126067" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1256043292"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Some of these comments are going off the deep end into metaphysics and similar wishy-washiness. An abstract formalism of numbers is just that: <i>abstract</i>. Abstract concepts don't have a physical, tangible existence. However, there are some physical, tangible objects that exist in the universe whose behavior can be modeled - <i>by humans</i> - with numbers. We found that our beefed up system of logic can be used to do nifty things, like keep track of how many cattle we're accumulating or to predict how cold it will feel tomorrow. But cattle don't reproduce dependent on a definition of natural numbers, and the temperature is a function of particle motion, not the real number line.</p> <p>Mark's "no such thing as exactly pi" doesn't even enter the question; many numbers do appear in our models exactly, be they natural numbers or not. We can describe <i>abstractly</i> various universes with various rules and then use numbers to build a model with which to predict grander things about them. The universe is "built" around the rules, not the model.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126067&amp;1=default&amp;2=en&amp;3=" token="MeFbVLTgCn83MnHa31RymwsL9S6PbfWsANSJ2lgZ5Ag"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Nate (not verified)</span> on 20 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126067">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126068" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1256043619"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>@48</p> <p>The criteria for a conditionally convergent series are that the series must have an infinite number of both positive and negative terms, and the series formed by taking the absolute values of the terms in the original series must diverge. (Or equivalently, the positive terms taken alone diverge to positive infinity and the negative terms taken alone diverge to negative infinity.)</p> <p>Such a series can be re-ordered to converge to any (without loss of generality, positive) target value but alternately summing positive terms until the target is overshot, and then summing negative terms until the target is undershot.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126068&amp;1=default&amp;2=en&amp;3=" token="SOiAue3WpiWuF8596RYdhVVhfv2yRImiJJSysveyj_0"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Cyan (not verified)</span> on 20 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126068">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126069" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1256046656"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>I wish more believers were as honest as you are... I wish more unbelievers were as honest as you are... :)</p> <p>You get 100 cool pts!</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126069&amp;1=default&amp;2=en&amp;3=" token="OuE9ElZk0DA4QrB_2rnQ-H0KYe0thQ00CoI8G_z9pcQ"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Anonymous (not verified)</span> on 20 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126069">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126070" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1256047491"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>@50</p> <p>Yes, I remembered that the process involved over and under shooting which is why I said alternating series, but that's definitely not general enough. As you said, infinite number of positive and negative terms while the absolute value of the series converges. Thanks for reminding me.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126070&amp;1=default&amp;2=en&amp;3=" token="QAltxydkH1FonEhccCJIJ20-8ROmEyIW0FpGiq5H4EA"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Nelson (not verified)</span> on 20 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126070">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126071" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1256047597"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Erp, strike aboslute value converges - replace with diverges. I'll just be quiet now. :)</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126071&amp;1=default&amp;2=en&amp;3=" token="YxTw6GTN2jcA3j-RT3L65qeZFiO_K9EpQxjSjRKCoCY"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Nelson (not verified)</span> on 20 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126071">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126072" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1256048123"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>The ending of Sagan's book »Contact« bugs me too. </p> <p>»The Argus computer had gone deeper into Ï, deeper than anyone on Earth, ...« but the »anomaly showed up most starkly in Base 11 arithmetic, where it could be written out entirely as zeros and ones«. (I have the paperback version in front of me.)</p> <p>Further: »The program reassembled the digits into a square raster, an equal number across and down. The first line was an uninterrupted file of zeros, left to right. After a few more lines, an unmistakable arc had formed, composed of ones« and so on. </p> <p>Having read it again after 10 years, I'll try to code a circle search for Ï -- well, if you can call those jagged paths of ones a circle. In the simplest form, the bit sequence </p> <p>0 0 0 0 0<br /> 0 0 1 0 0<br /> 0 1 0 1 0<br /> 0 0 1 0 0<br /> 0 0 0 0 0 </p> <p>would satisfy Sagan's description for a representation of a circle with radius 1. Occurances with larger radii would no doubt be less frequent, but still somwhere »inside« Ï. </p> <p>Unclear to me: Are the »circles« supposed to be hollow or filled with ones? And: is garbage between each scanline allowed? This search resembles more and more the infamous Bible Code search, alas with a »scripture« text of infinite length and variation.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126072&amp;1=default&amp;2=en&amp;3=" token="JRFyC69r9NlZHtcQWBa_AKt050w_sMZNRkis9S8b48I"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Marko (not verified)</span> on 20 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126072">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126073" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1256049228"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Just wanted to add the obvious: while finding patterns in Ï like those Sagan described would be be cool, and all the awesomer, the larger the radii are; it wouldn't mean that some intelligence put it there. </p> <p>It's just the law of large numbers combined with the fact that Ï is an algebraically independent transcendental number (if not normal, which still is an open question, yet probable and plausible, as I understand).</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126073&amp;1=default&amp;2=en&amp;3=" token="1--tk3_wAlXE8oOB3m26OzPdDbwf7bcSzHGSaj4X_0Q"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Marko (not verified)</span> on 20 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126073">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126074" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1256066278"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>I really enjoyed the parts deconstructing the "marching in series" statement. I think it would be even stronger with less meta-discussion.</p> <p>I also read that sentence in a way that makes a perfect sense to me, when I replace MY "all numbers" by Denise's "all numbers" - or maybe by her demographics, tribe, what have you. No, they don't deal with all the wonderful weirdness of numbers, ever. All that subtlety and complexity is completely invisible, practically non-existent to them. These people deal with natural, rational, and a few select irrational numbers like Pi, and that's probably it. It reminds me of the ethnographic studies of some tribes that count, "One, two, many." </p> <p>To me, there is an issue of whole cultures or demographics having their own alternative or limited math worlds. Do we mock them? Do we mandate that they learn all the "number weirdness" we know and love? Do we say it's "cultural differences" and celebrate the diversity?</p> <p>This is another philosophical question to add to the growing list. What should we do about groups of people effectively living in different math worlds - say, the world where most numbers they actually meet are rational?</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126074&amp;1=default&amp;2=en&amp;3=" token="kvzf5iREFIXyQpH15xTARfnIodNutumnSUfKNZJIhio"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://www.naturalmath.com" lang="" typeof="schema:Person" property="schema:name" datatype="">Maria Droujkova (not verified)</a> on 20 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126074">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126075" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1256073605"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>This is a really entertaining and informative discussion! I think some have read too much into Ms. O'Leary's comments on number, surely not made to posit a formal mathematical postulate! It seems to me rather to be saying that order and number in the universe are mutually dependant, that this relationship is discoverable, and it is far from unreasonable to infer the existence of a transcendant, powerful, thinking,<br /> planning God. In fact mathematicians have been known to give praise to the Creator for the number embedded in nature. Such statements in themselves did not render their theories true or false, testing is the only real way. Conversely, a series of errors on the path to a true solution would not render that mathematician's belief in God false or insane.</p> <p>Moreover, Mr. Chu-Carroll, where is your proof that God didn't "make" numbers? Are you entitled to it by virtue of your mathematics prowess? Is this a problem so self evident it requires no proof; like 1+1.!</p> <p>You misspelled your adversary's name, so it is plausible other simple realities elude you! ;)</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126075&amp;1=default&amp;2=en&amp;3=" token="csEQjLOPkobTp2HK_iJ7rhux7rGEKwekdYqAfGw9SGo"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Charles Tysoe (not verified)</span> on 20 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126075">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126076" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1256074039"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>"Numbers were not created by a supernatural being. No deity, no matter how powerful, could have created a universe where numbers didn't exist, or didn't work."</p> <p>Also, the meaning of this statement eludes me. Is the second supposed to follow from the first?</p> <p>I'll try: "The most powerful conceivable deity could not create a universe which did not contain and function according to numbers. Therefore conclude that our universe, which contains numbers which work, was not made by any conceivable deity"</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126076&amp;1=default&amp;2=en&amp;3=" token="OuEC7Xc6jQY8CZBOd0Pz_HmHcESpZvLo28wTqeQd0_A"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Charles Tysoe (not verified)</span> on 20 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126076">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126077" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1256103816"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Re #s 57 &amp; 58 - I haven't had any math practice since high school calculus nearly 40 years ago, but if I can take a crack at what I understand Mark to be saying (surely he and/or others will correct as necessary), it is that there are no such things as numbers in the Universe. Numbers are abstract concepts that can be used to describe real physical phenomena, but are not themselves to be confused with the phenomena they can be used to describe. </p> <p>In fact, not all numbers we know of have any sort of correspondence to real physical phenomena; and beyond that, there are infinitely many numbers we haven't even found, let alone used to describe anything, in any category of what we define as "numbers." So it isn't a question of whether a God would have the power to create something, it's that there's no "something" to create.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126077&amp;1=default&amp;2=en&amp;3=" token="HMaaJYA6HCcLEXh_F1E6_1esEgLORLLIfqohL87PW-g"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Jud (not verified)</span> on 21 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126077">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126078" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1256104889"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Much better than my lame attempt above, read the Wikipedia articles on real and complex numbers, particularly with reference to Ms. O'Leary's description of numbers as being in a series, and also regarding correspondence (or lack of same) with any physical reality.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126078&amp;1=default&amp;2=en&amp;3=" token="3HkMsaO887IFFdzRWAKKgtoOd-9K2eHHXUSKI8XMBq0"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Jud (not verified)</span> on 21 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126078">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126079" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1256117328"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>A number of people have said, in effect, "Numbers are abstracta, not existents." Is there a false dilemma lurking here?</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126079&amp;1=default&amp;2=en&amp;3=" token="KQdrlUNPvK_FEn1rSCpmsuZ3jUGsAnwBmqJPg7L_VmE"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">bob koepp (not verified)</span> on 21 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126079">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126080" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1256120600"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>"God created the integers" is the first part of a quote. "the rest is the work of mankind" finishes it.</p> <p>Many have woundered about the unreasonable effectiveness of mathematics. Penrose found his solution in the Platonic forms.</p> <p>Also some, such as Hardy, were proud of the fact that their math had no practical applications. After he died practical applications were found.</p> <p>"Is God a Mathematician" is a good book on the subject.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126080&amp;1=default&amp;2=en&amp;3=" token="h-bV-NaEs7M88oTKIiExcP7zN8UdcRzBAd7ws7xhdMo"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Orin T. (not verified)</span> on 21 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126080">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126081" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1256206051"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>rmp @ 1:</p> <p>That reminds me of a time when a physics professor was explaining that the operators for quantum mechanical observables had to have real eigenvalues.</p> <p>"You won't ever measure a complex position or energy. They aren't real."</p> <p>The class burst into laughter, as he realized what he had said.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126081&amp;1=default&amp;2=en&amp;3=" token="8tsFGrm8iU_FF67kDk-HxmbT5NQBhcki9NJUh4qbXD8"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Escuerd (not verified)</span> on 22 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126081">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126082" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1256207526"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>And yes, I know that was only tangentially related (maybe in that the prof came close to making the incorrect implication that real numbers are more real than imaginary ones), but I thought it was funny enough to share anyway.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126082&amp;1=default&amp;2=en&amp;3=" token="W3vuE7VlyYWsh3nr03lNporRSN_9WKxBbXVTVJSn59Y"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Escuerd (not verified)</span> on 22 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126082">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126083" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1256225477"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>While I agree with your post in general, there are a couple of clear mistakes you make, so it's pretty rough to mock people the way you do without having all the facts yourself. First of all, you say:</p> <p>"Numbers were not created by a supernatural being. No deity, no matter how powerful, could have created a universe where numbers didn't exist, or didn't work. "</p> <p>Let me first say that I don't believe in God. But the problem with your sentence is you don't comment on whether God exits or not, but you say that if God existed, and no matter how powerful he was, he couldn't have created a universe where numbers didn't exist. This is not true. A simple example would be just a completely empty universe, with nothing inside. Surely an all-powerful deity could create that! I don't see how numbers would exist there. A more non-trivial example would be a universe where everything was just an amorphous blob, and even if there were sentient beings, you could imagine beings whose consciousnesses are mixed with each other and intermingled, so that there is no way of talking about separate entities. If there is no way of separating things from each other, or talking about one thing vs another, then how could numbers exist in that world or work? And if I can think in 5 minutes of universes with no numbers, why couldn't an all powerful deity create them? The only difference is that I don't believe that deities exist.</p> <p>Now the second mistake is you say that there are no perfect circles in the universe. This is also not true. The horizon of a black hole can be in a state that is a perfect circle. Another example would be a state of a closed string - these can also be perfect circles.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126083&amp;1=default&amp;2=en&amp;3=" token="tUQ2O_c0OMGtij9cS2UQwqR2ZWyGmctLprPZXBSsaSs"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">M Dj (not verified)</span> on 22 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126083">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126084" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1256275461"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>M Dj: Even a completely empty universe would constitute 1 (one) existence, one spacetime and two types of symmetry: isotropy (directional symmetry) and homogeny (translational symmetry). Either way, there would be a countable amount of minima and maxima of <i>something</i>, e.g. of zero-point energy or space-time curvature, due to virtual particles. </p> <p>The same is true for the second model you're proposing, the amorphous blob universe (I like that concept). What's more, the blob has to be made out of something. Ãther? (-;</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126084&amp;1=default&amp;2=en&amp;3=" token="JeAlD27uE4hTYqywPhvDU20f_OhLNwvHoWkCQpmQBrg"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Marko (not verified)</span> on 23 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126084">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126085" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1256317088"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Yeah, superstition brings bad luck.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126085&amp;1=default&amp;2=en&amp;3=" token="uQdLN9_BKuuNBNmQnk4ldwnsgQtcJUdKP4_rcRfLLQo"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">gbk (not verified)</span> on 23 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126085">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126086" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1256338529"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>@ Marko:<br /> The empty Universe can be compact and doesn't have to contain any symmetry. There would be 1 spacetime, but you see you're just applying the concepts of our Universe to the description of another (hypothetical) Universe. But in that other Universe there is no mechanism by which the concept of numbers emerges, since there are no quantities to be counted or compared, or anyone to compare them.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126086&amp;1=default&amp;2=en&amp;3=" token="krFMEeQy7x-oFLeMmY8kuKfnl4kHD_gHtD0XkO8h96c"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">M Dj (not verified)</span> on 23 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126086">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126087" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1256358112"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>I've got to pull you up on the comment: </p> <p>"Numbers were not created by a supernatural being. No deity, no matter how powerful, could have created a universe where numbers didn't exist, or didn't work."</p> <p>The second sentence seems to have no grounding as far as I can see. True, we can't imagine a universe in which if you were placed there as a probe numbers would not exist. I'd simply claim that because we can't conceive of a universe where numbers don't exist, we also can't conceive of a deity creating such a universe. This seems to be a fault of our own imagination and not of the power of an all-powerful creator. </p> <p>In fact the first of the above sentences seems to be based on a bias that in a universe which was created by a deity there are external things of which it had no control. This seems simply to be a particular point of view. If you're going to dismiss someone's opinions you need to look at your own biases for belief.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126087&amp;1=default&amp;2=en&amp;3=" token="uftCGSr-L2A7Sd5aZ658ybbeAVFV0SLg4Eg3JON1fy8"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://www.jonstraveladventures.blogspot.com" lang="" typeof="schema:Person" property="schema:name" datatype="">Jonathan (not verified)</a> on 24 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126087">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126088" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1256432510"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p><i>It can't account for logical wierdness like Gödel's incompleteness theorem, which relies on the logical structure of numbers.</i></p> <p>fwiw, Gödel (and arguably Cantor) believed firmly that the human mind <i>can</i>, in principle, resolve any rational question that it can pose. In his view, his incompleteness results only demonstrated the poverty of the formalizations we have, and there should be no reason we could not develop stronger methods which could solve all problems we could pose. ("Stronger" in a more fundamental sense than e.g. strengthening the Peano axioms with ad hoc axioms which solve whatever particular problem we might consider.) This is fairly surprising from the point of view of the popular conception of Gödel, but he devoted much of his life to such considerations. His method of attack was apparently based in Husserl's phenomenology.</p> <p>There is a good paper on this very topic I happen to be (slowly) reading right now in the Bulletin of Symbolic Logic, I believe it's posted online. The title is "Gödelâs Program revisited".</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126088&amp;1=default&amp;2=en&amp;3=" token="qA3mdSCYi6y1tKMgBP84Qvc-RPqpdUhG5Y0n_OjGaj8"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">p (not verified)</span> on 24 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126088">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126089" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1256432831"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p><i>I'd simply claim that because we can't conceive of a universe where numbers don't exist, we also can't conceive of a deity creating such a universe.</i></p> <p>Isn't inconceivability supposed to be an attribute of God? (c.f. Job)</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126089&amp;1=default&amp;2=en&amp;3=" token="SeXSGXCzankSBcBspmTipCJJGpZ0qgsNOh-bloY_RHo"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">p (not verified)</span> on 24 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126089">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126090" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1256478683"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>This would be a great post even with no mention of O'Leary silliness, but poor Denise gets PWND anyway, making this a double treat!</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126090&amp;1=default&amp;2=en&amp;3=" token="TERRd5Qth3mxv79WQIHe4N7YYW6ulQrmSkMRdar1fMU"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://dreadtomatoaddiction.blogspot.com/" lang="" typeof="schema:Person" property="schema:name" datatype="">Tomato Addict (not verified)</a> on 25 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126090">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126091" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1256488133"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>I can't believe there are still people who believe in Cantor's theory. It's complete silliness and makes the people who believe in superstition look like the smart ones by comparison. Cantor was well known to treat infinity as a finite number and that's all he's doing with his theory. It doesn't mean anything.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126091&amp;1=default&amp;2=en&amp;3=" token="MB7T4QoGc7sSTI7FYhdGzDNLuzgO7zoBNbWcn84gNKA"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Vorlath (not verified)</span> on 25 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126091">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126092" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1256490748"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Yes, her name is Denyse O'Leary - her blog post that this was quoted from is here: <a href="http://post-darwinist.blogspot.com/2009/10/mathematics-gap-tooth-creationist-moron.html">http://post-darwinist.blogspot.com/2009/10/mathematics-gap-tooth-creati…</a> . I'm also pretty sure that, while the Discovery Institute does reference her "work", she's not officially associated with them. </p> <p>Now, I do agree that her statement is entirely ignorant about mathematics, but as creationists go, she at least tries to exist on the reasonable side of things. I have to respect her a little bit, for, in other works, trying to come to terms with the multiverse theory in terms of religious belief (which I haven't really seen too many try to do). As an ardent atheist, I think she's wrong and very ignorant of fundamental physics, but I at least respect her for being a tiny bit more consistent than most. </p> <p>O'Leary's viewpoint (despite her not being familiar with the total ordering or well-ordering of the reals, which is really hard to fault a lay person for) is not all that dissimilar to that of a mathematical Platonist. Platonists believe that all mathematics, all numbers, truly exist in the universe, and we are only discovering them as we go, not inventing. As a formalist, I think this is silly, but it's still a widely held belief, by members of the mathematical community even. Mathematical constructivists even exist, as practising mathematicians, where the only numbers (or functions, or well-orderings, etc.) that exist are those that we can describe. The philosophical discussion to completely dismiss mathematical Platonism and Constructivism are more subtle than you might want to admit (and I say this as someone who disagrees with both of those points of view).</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126092&amp;1=default&amp;2=en&amp;3=" token="Kl1Qo0ubSk4PX8NeQ1wIxcZBRq6503cX422zg7NJUhc"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://badphysics.wordpress.com/" lang="" typeof="schema:Person" property="schema:name" datatype="">S.C. Kavassalis (not verified)</a> on 25 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126092">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126093" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1256507692"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>@73: Whether one "believes in" Cantor's theory or not hasn't much to do with the practice of mathematics. Fascinating work continues to build on it and will probably continue indefinitely. There is a book summarizing work from this century called "The Higher Infinite." You might find it interesting whether you regard it as "real" or mathematical "science fiction", either way, it's still fun stuff.</p> <p>As far as whether it "means anything" outside of itself, that is a subtle issue and a hard case to make either way, even for the integers, as the debate on this thread demonstrates.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126093&amp;1=default&amp;2=en&amp;3=" token="upVcSDmgIDQRhHIxn5MvvyfyZjHo30hbBEpWtuunmTk"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">p (not verified)</span> on 25 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126093">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126094" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1256926670"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Umm, assuming choice every set can be well ordered. So you can "list out" the reals in a certain sense.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126094&amp;1=default&amp;2=en&amp;3=" token="VM70ao6ugMfxAbQTLT4JWF0Y-xSNL4g3ZIMocW9EGwA"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">TruePath (not verified)</span> on 30 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126094">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126095" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1257345564"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>1) God created the universe.<br /> 2) The universe contains the concept "numbers".<br /> Therefore ... God created "number".</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126095&amp;1=default&amp;2=en&amp;3=" token="MHdnRlczM4QQLRn7a_7AW2MFTTnt5UEdkFg_f9qko5k"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">mark (not verified)</span> on 04 Nov 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126095">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126096" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1258022912"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Such a judgmental lot. It kills me how this group seems to pride itself on how "smart" it is simply because you are able to blather on about something someone else (probably a professor or text) taught you about numbers. We are all equally stupid and no matter what you are an expert on you are being called stupid in a multitude of parallel universes. For instance, here you mock people for their 'infantile' understanding of numbers and number theory while in a parallel blog people are mocking your use of the English language or your ignorance of philosophy or religion. Or they are making fun of how much energy of your lives you have wasted on a topic that doesn't change anything for 99.99% of the world.<br /> By the way God must have made numbers because had anyone checked the bible they would know that Numbers is between Exodus and Deuteronomy. (that's a joke -- please go on wasting your life with blogs about how stupid people seemingly don't know the same things you do)</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126096&amp;1=default&amp;2=en&amp;3=" token="73lXaEeRmc2oIydUfQD8RjauS53yHBauoVs9JHw946g"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">grenuck (not verified)</span> on 12 Nov 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126096">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126097" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1259828497"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>An ignorance about nuances of the English language and a widespread ignorance of basic underlying issues of philosophy or religion are probably not reasons for alarm. Basic innumeracy is, particularly on the part of the decision makers of our society We live in a universe that is increasingly dominated by mathematical facts of life.</p> <p> The title of the Blog should have given you a clue that involved a critique of the use of mathematics. The value of blogs like this is that they provide some education along with their critiques. And if there is some one-upmanship in the comments, that has to do with being human. Consider disagreements a chance to do at least a Google search to further your understanding, or go read blogs that irritate you less.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126097&amp;1=default&amp;2=en&amp;3=" token="gQ56vApFfCzLoFcB3iVht6uuloK4x20cCnoS7amaXHg"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://clif-davis.livejournal.com/" lang="" typeof="schema:Person" property="schema:name" datatype="">Clif Davis (not verified)</a> on 03 Dec 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126097">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2126098" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1271829346"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>"Anyway, I didn't get a chance to say this on the program so I will now ... All numbers are - in my view - created by God ... I tend to flub the gap-tooth creationist moron role..." -Denise O'Leary. </p> <p>Denise didn't stand up for her beliefs in this interview. She had an idea of what they expected of her and withheld those views. I wonder why she would do such a thing--given how much more acceptable it is to be theistic than atheistic in America. I can only conclude that she knows how silly of a notion it is so she saved it for preaching to her choir. At least she didn't subject her metro area to that unfounded propaganda.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2126098&amp;1=default&amp;2=en&amp;3=" token="7QvgjWiAAIqmvSpm5yhv7Zvp_4r4UuSdcceVbVakrRE"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">T. Cook (not verified)</span> on 21 Apr 2010 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2126098">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> </section> <ul class="links inline list-inline"><li class="comment-forbidden"><a href="/user/login?destination=/goodmath/2009/10/19/sorry-denise-but-god-didnt-m%23comment-form">Log in</a> to post comments</li></ul> Mon, 19 Oct 2009 13:54:52 +0000 goodmath 92758 at https://scienceblogs.com You can't write that number; in fact, you can't write most numbers. https://scienceblogs.com/goodmath/2009/05/15/you-cant-write-that-number-in <span>You can&#039;t write that number; in fact, you can&#039;t write most numbers.</span> <div class="field field--name-body field--type-text-with-summary field--label-hidden field--item"><p> In my Dembski rant, I used a metaphor involving the undescribable numbers. An interesting confusion came up in the comments about just what that meant. Instead of answering it with a comment, I decided that it justified a post of its own. It's a fascinating topic which is incredibly counter-intuitive. To me, it's one of the great examples of how utterly wrong our<br /> intuitions can be.</p> <p> Numbers are, obviously, very important. And so, over the ages, we've invented lots of notations that allow us to write those numbers down: the familiar arabic notation, roman numerals, fractions, decimals, continued fractions, algebraic series, etc. I could easily spend months on this blog just writing about different notations that we use to write numbers, and the benefits and weaknesses of each notation.</p> <p> But the fact is, the <b>vast, overwhelming majority of numbers cannot be written<br /> down <em> in any form</em></b>.</p> <p> That statement seems bizarre at best. But it does actually make sense. But for it to<br /> make sense, we have to start at the very beginning: What does it mean for a number to be <em>describable</em>?</p> <!--more--><p> A <em>describable</em> number is a number for which there is some finite representation. An<br /> indescribable number is a number for which there is <em>no</em> finite notation. To be clear,<br /> things like repeating decimals are <em>not</em> indescribable: a repeating decimal has a finite<br /> notation. (It can be represented as a rational number; it can be represented in decimal notation<br /> by adding extra symbols to the representation to denote repetition.) Irrational<br /> numbers like π, which can be computed by an algorithm, are <em>not</em> indescribable. By<br /> indescribable, I mean that they <em>really</em> have no finite representation.</p> <p> As a computer science guy, I naturally come at this from a computational<br /> perspective. One way of defining a describable number is to say that there is<br /> <em>some</em> finite computer program which will generate the representation of<br /> the number in some form. In other words, a number is describable if you can<br /> describe how to generate its representation using a finite description. It<br /> <em>doesn't matter</em> what notation the program generates it in, as long as the<br /> end result is uniquely identifiable as that one specific number. So you could use<br /> programs that generate decimal expansions; you could use programs that generate either<br /> fractions or decimal expansions, but in the latter case, you'd need the program to<br /> identify the notation that it was generating.</p> <p> So - if you can write a finite program that will generate a representation<br /> of the number, it's describable. It doesn't matter whether that program ever finishes<br /> or not - so if it takes it an infinite amount of time to compute the number,<br /> that's fine - so long as the <em>program</em> is finite. So π is describable: it's<br /> notation in decimal form is infinite, but the program to generate that representation is finite.</p> <p> An indescribable number is, therefore, a number for which there is no notation,<br /> and no algorithm which can uniquely identify that number in a finite amount of space. In theory, any number can be represented by a summation series of rational numbers - the indescribable ones<br /> are numbers for which not only is the length of that series of rational numbers<br /> infinite, but given the first K numbers in that series, there is no algorithm<br /> that can tell you the value of the K+1th rational. </p> <p> So, take an arbitrary computing device, φ, where φ(x) denotes the result of<br /> running φ on program x. The total number of describable numbers can be no larger than<br /> the size of the set of programs x that can be run using φ. The number of programs<br /> for any effective computing device is countably infinite - so there are, at most,<br /> a countably infinite number of describable numbers. But there are uncountably many<br /> real numbers - so the set of numbers that can't be generated by any finite program<br /> is uncountably large.</p> <p> Most numbers <em>cannot</em> be described in a finite amount of space. We can't compute with<br /> them, we can't describe them, we can't identify them. We know that they're there; we can<br /> <em>prove</em> that they're there. All sorts of things that we count on as properties of<br /> real numbers wouldn't work if the indescribable numbers weren't there. But they're<br /> totally inaccessible.</p> </div> <span><a title="View user profile." href="/goodmath" lang="" about="/goodmath" typeof="schema:Person" property="schema:name" datatype="">goodmath</a></span> <span>Fri, 05/15/2009 - 04:41</span> <div class="field field--name-field-blog-tags field--type-entity-reference field--label-inline"> <div class="field--label">Tags</div> <div class="field--items"> <div class="field--item"><a href="/tag/information-theory" hreflang="en">Information theory</a></div> <div class="field--item"><a href="/tag/numbers" hreflang="en">numbers</a></div> </div> </div> <div class="field field--name-field-blog-categories field--type-entity-reference field--label-inline"> <div class="field--label">Categories</div> <div class="field--items"> <div class="field--item"><a href="/channel/free-thought" hreflang="en">Free Thought</a></div> </div> </div> <section> <article data-comment-user-id="0" id="comment-2123847" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242378607"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Yes that has always been awesome (in the literal sense) to me. All the numbers humanity ever could describe, ever, even to infinite time, are just a sprinkle on the number line.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123847&amp;1=default&amp;2=en&amp;3=" token="eg3nz68V3Qg2CPAR7czmzRkJeDjZAoWWok1CBZ2pz6k"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Markk (not verified)</span> on 15 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123847">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123848" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242380218"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>"The number of programs for any effective computing device is countably infinite..." Prove it. OK, I'm not that lazy, I looked it up. Basically, all you need to know is that "<a href="http://lamp.tu-graz.ac.at/~hadley/uncomputable_numbers.html">finite computer programs can always be represented as a finite text file.</a>" Order the programs alphabetically... 1:1 mapping with the natural numbers... blah blah blah...</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123848&amp;1=default&amp;2=en&amp;3=" token="uxrrWc3ga3kbSpQFMvjyiYl9zHQGYK5mtImTvvm2LoM"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://jackal-eyes.blogspot.com/" lang="" typeof="schema:Person" property="schema:name" datatype="">Jackal (not verified)</a> on 15 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123848">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123849" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242381984"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>What if the program describing the number *isnt* finite, but can be described itself by a finite program? Like a genetic algorithm, for example.</p> <p>Would that number count as undescribable, or would it simply open up a new class of describable numbers, or would they already somehow be included in your definition?</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123849&amp;1=default&amp;2=en&amp;3=" token="yNhe6GAX0j_5b0-jFfAHtnqnzOwnhsAfzivFG_BsB0I"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">JC (not verified)</span> on 15 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123849">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123850" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242382003"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>when explaining this to people i often like using a geometric example:<br /> draw a line segment on a piece of paper, consider the length of that segment to be 1. if you put a point on that line, the length from that point to the end of the line will virtually always be an indescribable number.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123850&amp;1=default&amp;2=en&amp;3=" token="-fZ--PFcF-jamqJMbtcDlfgapcVEnYXseej0HYkwc4A"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Crosspolytope (not verified)</span> on 15 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123850">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123851" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242382242"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>What about numbers which are describable, but we don't know what the description is?</p> <p>Consider the smallest even number &gt;2 which is not the sum of two prime numbers, if there is such a number, or else 2. We know that 2 is describable, and we know that all even numbers are describable, so, in either case, that number is describable.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123851&amp;1=default&amp;2=en&amp;3=" token="AGhhimZgqy1iBNhOsx1huceSUPbPNaa_uJcepQAvk4Q"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">TomS (not verified)</span> on 15 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123851">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="138" id="comment-2123852" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242382348"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Re #3:</p> <p>That's not an escape. It comes back to basic computation theory: if you could write a program that generates a program that does X, you can write a program that does X. </p> <p>If you could write a program that could generate an infinitely long program that generated a number, you could bypass the middle step and just write a program that generated the number.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123852&amp;1=default&amp;2=en&amp;3=" token="il97Z22wljub1PcSNqjeLGHFKfyaCb8rabo-_Rs94-U"></drupal-render-placeholder> </div> <footer> <em>By <a title="View user profile." href="/goodmath" lang="" about="/goodmath" typeof="schema:Person" property="schema:name" datatype="">goodmath</a> on 15 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123852">#permalink</a></em> <article typeof="schema:Person" about="/goodmath"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/goodmath" hreflang="en"><img src="/files/styles/thumbnail/public/pictures/markcc.jpg?itok=PmLQEFZp" width="92" height="100" alt="Profile picture for user goodmath" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="138" id="comment-2123853" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242382558"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Re #5:</p> <p>Doesn't matter. Knowing <em>which</em> numbers are describable, and knowing <em>how many</em> numbers are describable are two different problems. In terms of computation, it comes back to the good old halting program; you know that some programs will halt, and some won't - but you can't say which ones. But you can reason about properties of various subsets of programs, even if you can't always tell which programs are in which subsets.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123853&amp;1=default&amp;2=en&amp;3=" token="vfzvvCl25p5qFSfTQnYR5ve7BLljZXOLLYDC8_Irirc"></drupal-render-placeholder> </div> <footer> <em>By <a title="View user profile." href="/goodmath" lang="" about="/goodmath" typeof="schema:Person" property="schema:name" datatype="">goodmath</a> on 15 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123853">#permalink</a></em> <article typeof="schema:Person" about="/goodmath"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/goodmath" hreflang="en"><img src="/files/styles/thumbnail/public/pictures/markcc.jpg?itok=PmLQEFZp" width="92" height="100" alt="Profile picture for user goodmath" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123854" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242383736"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>I'm confused about pi. Where is the finite program that can compute the infinite digits of pi? Does it matter that such a program might need infinite memory to run or you don't consider memory a part of the program? All programs to compute pi that I know have some upper limit on the number of digits they can compute.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123854&amp;1=default&amp;2=en&amp;3=" token="0Xz93fPq1XjMH9jvHd6NYdOvdTVj1IE-2oZaPfRQKgQ"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">AlefSin (not verified)</span> on 15 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123854">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123855" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242383922"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>This isn't the best definition of describable to use. There are more general definitions. For example, I can describe in an intuitive sense a number in the following way:<br /> List all possible Turing machines in some order (we can do that explicitly). Construct a number a as a having a 1 in the nth digit iff the nth Turing machine halts on the blank tape. This number is intuitively describable but is not describable under your definition.</p> <p>A slightly more general definition which includes all of yours but requires more detail to be more precise is that the number can be uniquely specified in ZFC using a finite statement. The basic result still holds in this larger setting.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123855&amp;1=default&amp;2=en&amp;3=" token="kVDVdd_aGlstu0eHbKhwxSXQ7U4lENcnQ11_OwNtEtE"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://religionsetspolitics.blogspot.com/" lang="" typeof="schema:Person" property="schema:name" datatype="">Joshua Zelinsky (not verified)</a> on 15 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123855">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123856" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242384327"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>TomS, all *integers* are describable in the sense Mark's talking about here. (Whether or not we know what they are.) In particular, e.g., if you pick a formalization of number theory and a way to encode proofs therein as integers, then the integer corresponding to the shortest proof of Fermat's last theorem is describable, even though we'll never know what that is.</p> <p>But a *real number* that there's no way to compute isn't describable in Mark's sense, although of course the fact that we don't know a way to compute a number doesn't mean that there isn't one.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123856&amp;1=default&amp;2=en&amp;3=" token="uMP9px2hHu4e1LKQAHq0QWAUdl5ggKTqXkvpfjoEB9g"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://www.mccaughan.org.uk/g/" lang="" typeof="schema:Person" property="schema:name" datatype="">g (not verified)</a> on 15 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123856">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="138" id="comment-2123857" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242384666"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Re #8:</p> <p>There are a variety of ways to compute pi, mostly based on algebraic series. For example, see: </p> <p><a href="http://mathworld.wolfram.com/PiFormulas.html">http://mathworld.wolfram.com/PiFormulas.html</a></p> <p>Those formulations are all built on an infinite process, where each step gets you closer to the actual value of pi. Any of them can be implemented as a program that outputs a series of progressively better approximations of pi; further, any of them can be implement in a form which outputs individual digits of pi in sequence after they're sure that a given digit won't be changed by further steps.</p> <p>Of course, we are talking about theoretical programs. You can't "output" an infinitely long representation without having infinite storage available. In the typical formulations of theoretical computers, you do have infinite storage available.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123857&amp;1=default&amp;2=en&amp;3=" token="y1N1jS3UMxwRql5e55GDiBUDopB4d3bi6Brw-8pmUDw"></drupal-render-placeholder> </div> <footer> <em>By <a title="View user profile." href="/goodmath" lang="" about="/goodmath" typeof="schema:Person" property="schema:name" datatype="">goodmath</a> on 15 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123857">#permalink</a></em> <article typeof="schema:Person" about="/goodmath"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/goodmath" hreflang="en"><img src="/files/styles/thumbnail/public/pictures/markcc.jpg?itok=PmLQEFZp" width="92" height="100" alt="Profile picture for user goodmath" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="138" id="comment-2123858" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242384949"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Re #9:</p> <p>I *think* that we're still looking at the same basic definition. For the example that you used, we can generate that as the limit of the result of a computation. Take a turing machine whose first approximation is 0. Then it runs one step from program 0. IF that's "halt", it writes a 1 in position 0. Then it runs one from program one. Then one step from 0, one step from 1, one step from 2. Then one from 0, one from 1, one from 2, one from three. The usual diagonal structure used for iterating over all programs. As it adds machines to the sequence that it's iterating over, it sets their initial value to 0; if/when they halt, it writes a 1 in that position. The result of that process in the limit is the number you're describing. You'll never get it exactly, and you'll never know when a given bit has stabilized; but if it runs forever, it will generate the number. So the number is describable by a non-terminating finite program.</p> <p>Or am I missing something?</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123858&amp;1=default&amp;2=en&amp;3=" token="FDLnpWujEDej8KVjvtLPdPMX5M65rPSQDW5EclkZtBY"></drupal-render-placeholder> </div> <footer> <em>By <a title="View user profile." href="/goodmath" lang="" about="/goodmath" typeof="schema:Person" property="schema:name" datatype="">goodmath</a> on 15 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123858">#permalink</a></em> <article typeof="schema:Person" about="/goodmath"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/goodmath" hreflang="en"><img src="/files/styles/thumbnail/public/pictures/markcc.jpg?itok=PmLQEFZp" width="92" height="100" alt="Profile picture for user goodmath" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123859" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242385082"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p><i>'It doesn't matter whether that program ever finishes or not - so if it takes it an infinite amount of time to compute the number, that's fine - so long as the program is finite.'</i><br /> That doesn't really make sense, because if the program doesn't terminate, it doesn't produce any description. I think it might be better to say that the program produces progressively better approximations, i.e. it is a computable number.</p> <p>Another important distinction that should be made is the difference between computable and describable. E.g. your favourite number, Chaitin's Omega is definitely describable (i.e. provably there is such a unique number, under appropriate premises), but not computable.</p> <p>What intrigues me about this whole thing is that all of mathematics really condenses into a finite set (at any given time there is only finite, if expanding, space for mathematical scripture), even though conventional theories contain all these uncountable sets.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123859&amp;1=default&amp;2=en&amp;3=" token="ZQGhzGl43z6wYnxeZnZ0B3ulzI8MiIQ-5sOtcy3udDY"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Flaky (not verified)</span> on 15 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123859">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123860" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242385281"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>#8: Try google: "program that computes pi". A kid taking computer programming for the first time can write such a program easily.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123860&amp;1=default&amp;2=en&amp;3=" token="i4vKXPS7r7FLLEXMp4DHiM3wAo7z0gYGsZ-TDXml2Fc"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">kevin (not verified)</span> on 15 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123860">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123861" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242385834"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>#4 brings up an interesting conundrum. Whereas by drawing a finitely long line on a piece of paper, and whereas you assume it to be of length one, and whereas you place a point randomly on said line, therefore the distance from the point to the end of the line is likely to be an indescribable number. Yet, by undertaking this procedure, you've just described it, symbolically and in finite space, by drawing a line with a dot on it.</p> <p>True, the representation doesn't consist of decimal figures with which you can readily perform arithmetic with. Nonetheless, the space taken to represent the undescribable number is itself finite and expressed visually. In other words, it has a description.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123861&amp;1=default&amp;2=en&amp;3=" token="MAPX8EtpXTUYXWPb1-A8S2_3V8nO3_1JeDfDB51UB3M"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Samuel A. Falvo II (not verified)</span> on 15 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123861">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123862" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242386130"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Is "finite amount of space" the right criteria? This is very informal, but I could imagine a decimal expansion where each digit necessarily takes a larger and larger amount of space to generate, so the space requirements are effectively unbounded, but the amount of space needed to calculate the *next* digit is always bounded.</p> <p>The key criteria in my thinking is the program "writing" the number (I can't help but think in terms of decimal expansions of pi, it seems) has to be <i>productive</i> - it has to always be able to generate some more of the number in a finite amount of space and time, but the amount of space required as the decimal expansion streams out could be arbitrarily large.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123862&amp;1=default&amp;2=en&amp;3=" token="ygGh3VnHNN3C-RCRbIYYyVR3N6r9cETY0Ocdvr8m3Z8"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://www.cs.cmu.edu/~rjsimmon" lang="" typeof="schema:Person" property="schema:name" datatype="">Rob Simmons (not verified)</a> on 15 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123862">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123863" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242386561"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>#15 I don't see this as a conundrum, but I could be wrong. What you describe is not a finite procedure for generating <i>a particular</i> number, it's a finite procedure for finding numbers in a range of numbers. In other words, it doesn't uniquely characterize any single number - the criteria for some number being describable is there is a finite procedure that allows for calculating <i>that number</i>.</p> <p>But I don't know the theory behind this deeply, so this is, at best, informed speculation.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123863&amp;1=default&amp;2=en&amp;3=" token="kz_90kmOlU2RuPeZyg1zbUz-A90KRseBu7yQN_LwD9E"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://www.cs.cmu.edu/~rjsimmon" lang="" typeof="schema:Person" property="schema:name" datatype="">Rob Simmons (not verified)</a> on 15 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123863">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123864" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242386998"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Finite amount of space refers to the length of the program, not the amount of memory it allocates.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123864&amp;1=default&amp;2=en&amp;3=" token="Ni1R7R8XXhBUu49qIDQrVmFMC7B4q-tpbcxqQSyK8HQ"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Freak (not verified)</span> on 15 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123864">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123865" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242387096"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Just use computable math and intuitionistic logic, leave all the other numbers and classical logic to the mathematicians.</p> <p>No infinity, no problem.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123865&amp;1=default&amp;2=en&amp;3=" token="wNw1yxiW0m5tLTUzv1TSpzItj0fLbBjmdKkwM1nCGb4"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Maya Incaand (not verified)</span> on 15 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123865">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123866" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242387340"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>#18 Aaah yes, must have misread that part of the post.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123866&amp;1=default&amp;2=en&amp;3=" token="3wed6-re4uCHF5MxQ8raKJcrAGMBpUzYJF_ja1oeuCE"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://www.cs.cmu.edu/~rjsimmon" lang="" typeof="schema:Person" property="schema:name" datatype="">Rob Simmons (not verified)</a> on 15 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123866">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123867" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242387841"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>I think that I agree with #15 that we're ignoring the whole set of geometrical descriptions of numbers. For example, the geometric descriptions of Ï and â2 are rather trivial even though we can't get them exact without the ability to draw perfect circles or perfect right angles (much like the infinite algorithm that would be needed to express these numbers as complete decimals).</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123867&amp;1=default&amp;2=en&amp;3=" token="IEP_iarKPsuzxmA2VfIxnnSaa1tvEc9fWugiGWVLqLM"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://thesciencepundit.blogspot.com/" lang="" typeof="schema:Person" property="schema:name" datatype="">The Science Pundit (not verified)</a> on 15 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123867">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123868" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242387933"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>@Maya Incaand: Hear, hear. Too bad that the classic theories tend to be simpler. Though I've half a mind restarting Hilbert's program from Conway's surreal numbers.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123868&amp;1=default&amp;2=en&amp;3=" token="t8pqE4MOJZOfmaIqyYNgJF6EpVQkLhlMeYMJSs_cAIA"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Flaky (not verified)</span> on 15 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123868">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123869" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242388034"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>#15, your idea reminds me of the story of an alien visiting Earth. The alien wants to take as much of Earth's culture and knowledge back with it as it can, but its spaceship is pretty small. The alien's solution? It takes all of the information that it's gathered, joins it into a huge binary file, then interprets it as a binary decimal expansion: 0.1011010110110001...</p> <p>The alien then takes a carefully calibrated rod from its spaceship and trims it down so that it's a fraction of its old length equal to the number just calculated. The alien can now return home with all of Earth's knowledge.</p> <p>Of course, this would quickly run into problems with physics. Assuming the rod was 1 m long to start with, the alien could record about 116 bits using this method before requiring sub-Planck length resolution. This also assumes that the universe isn't discrete. If there's an uncountable number of positions in space, just how many are there? Aleph_1? More than aleph_1? Beth_1? To quote Scott Aaronson, "We don't want the answers to "physics" questions to depend on the axioms of set theory!"</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123869&amp;1=default&amp;2=en&amp;3=" token="5flrb_8LJ__4qnPgncIuplgGh3RsjropPkgJLKLz9D4"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">mds (not verified)</span> on 15 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123869">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123870" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242389113"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>@mds<br /> I think we don't want the answers to *any* questions to depend on the axioms of set (ZFC) theory!</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123870&amp;1=default&amp;2=en&amp;3=" token="4uswPfoBYbHXdeFtwtrm_sfetiS2RwtiXigavFMSV3g"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Maya Incaand (not verified)</span> on 15 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123870">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123871" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242389994"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Mark, yes you are correct that in this case they are the same. I'm not convinced that the definitions are the same. For example, if I had said instead of halts on the blank tape I had said "halts on all input tapes" then there's no obvious way to generalize to that question. Moreover, even with an oracle that answers the halting problem one cannot answer whether a given machine will halt on all inputs. So I suspect that this formulation does in fact give a more general result.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123871&amp;1=default&amp;2=en&amp;3=" token="GOQCBAOMBRV2MUQODZcqBsDji6DMXMP5YyQ77PJGL0c"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://religionsetspolitics.blogspot.com/" lang="" typeof="schema:Person" property="schema:name" datatype="">Joshua Zelinsky (not verified)</a> on 15 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123871">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123872" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242390153"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>"It doesn't matter whether that program ever finishes or not"</p> <p>The program doesn't have to finish, but it has to eventually generate the number to any particular accuracy.</p> <p>I wrote about this topic a while ago: <a href="http://igoro.com/archive/numbers-that-cannot-be-computed/">http://igoro.com/archive/numbers-that-cannot-be-computed/</a></p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123872&amp;1=default&amp;2=en&amp;3=" token="8UBk287b7umq73JN0wc-LyWClInTqcYWjJmvjQmdMNs"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://igoro.com/" lang="" typeof="schema:Person" property="schema:name" datatype="">Igor Ostrovsky (not verified)</a> on 15 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123872">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123873" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242391393"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>So, an example of a undescribbible number is infinite sequence of digits generated by a true quantum generator of digits.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123873&amp;1=default&amp;2=en&amp;3=" token="-u0b1SirbjawTAra8bvBgKd7kJp2cnCYmMRpvENic74"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="" content="Daniel de França MTd2">Daniel de Fran… (not verified)</span> on 15 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123873">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="138" id="comment-2123874" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242391603"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Re #27:</p> <p>Yes, exactly. And per information theory, the vast majority of numbers are, basically, something that could be generated by a true random digit generator. </p> <p>The way that I actually like to think of it is in terms of compressibility. I know that it's a strange way of approaching it to most folks, which is why I didn't discuss it in the main post. But you can think of a program that generates a representation of a number as a sort of compressed form of the number. And as the standard proofs about compression show, most strings are random and non-compressible. Same holds for numbers: most numbers don't have enough structure to allow us to describe them by anything less than their full infinite representation.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123874&amp;1=default&amp;2=en&amp;3=" token="qfbEUJpoEq393uGp90Tg7uePZurnJu-2bnA5xSNdOLY"></drupal-render-placeholder> </div> <footer> <em>By <a title="View user profile." href="/goodmath" lang="" about="/goodmath" typeof="schema:Person" property="schema:name" datatype="">goodmath</a> on 15 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123874">#permalink</a></em> <article typeof="schema:Person" about="/goodmath"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/goodmath" hreflang="en"><img src="/files/styles/thumbnail/public/pictures/markcc.jpg?itok=PmLQEFZp" width="92" height="100" alt="Profile picture for user goodmath" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123875" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242393966"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Just wanted to pop in and thank you for this blog Mark. Your writing is clear and engaging and the topics you explain are always thought-provoking. Thanks so much!</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123875&amp;1=default&amp;2=en&amp;3=" token="zXxpkl257e_KTqTwKjxcxD_LojLS7g4qdR8A7ejhfhc"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Atrytone (not verified)</span> on 15 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123875">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123876" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242394388"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Well I guess it gives an whole new meaning to the Friday Random Ten theme.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123876&amp;1=default&amp;2=en&amp;3=" token="WZa6vh4ug3UT75KibBDwGOEaxTATY2M16YNTtnrkEqE"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Wallace Turner (not verified)</span> on 15 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123876">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123877" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242397121"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Of course, this is talking about the set of Reals; that is to say, where every upper-bounded sequence of numbers has a least upper bound. Each real number is actually the limit of some bounded sequence of rationals. Two reals are considered equal if for any arbitrary rational ε, there is always some natural number of terms N past which the two sequences are within ε of each other. Computable real numbers may be represented by the program which recognizes a term in that bounded sequence by halt-accepting. (However, Turing's halting problem means that there are sequences for which there can be no program, no matter what particular Ï you use. On the other hand, Ï can be upgraded with halting oracles if need be... at least, if you're a mathematician.)</p> <p>I think the Reals requires having the Axiom of the Power Set, but I'm not sure. If so, and if you are willing to take Refutation of the Power set, accepting that there may not be a Power Set for infinite sets (such as the Integers)... there's only one Cardinality of Infinity, and no Reals. At that point, you may take your computing device Ï, the "set" of Ordinals, and denote any "computable" number by the (finite) representation of what level hyper-Ï computing device is required and the (finite) program recognizing the terms of the upper-bounded limit sequence generating the number.</p> <p>However, most mathematicians like having the Reals instead of just the Countable-Ordinal Computables.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123877&amp;1=default&amp;2=en&amp;3=" token="DtrSGW6BZe4YSnQHK1E4POeZcdXRo5LhF-8HutETmIg"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">abb3w (not verified)</span> on 15 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123877">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123878" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242400758"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>I think it would be more correct to say that the quantity of numbers that we cannot write is not only "most" numbers, but would in fact be an infinite quantity of numbers. So, how many numbers can we write? (1/infinity)?</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123878&amp;1=default&amp;2=en&amp;3=" token="pGXjIPcOZRTvt3usB9HBheYaZXi3FgKEc18-50hdKPg"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Erick (not verified)</span> on 15 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123878">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123879" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242401282"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Re #4:</p> <p>By creating a physical representation (a line and a point) you have made the number describable. You could count the number of molecules it takes to create the line (with a few assumptions), then count the number of molecules that it takes to go from one end to the point. So not only is the number describable, it's rational.</p> <p>It's like Feynman's argument with topologists from "Surely You're Joking, Mr. Feynman" about how they could rearrange the pieces of an orange peel, and make it bigger than the sun. Feynman said, "But you said an orange! You can't cut the orange peel any thinner than the atoms."</p> <p><a href="http://www.physicsforums.com/archive/index.php/t-182942.html">http://www.physicsforums.com/archive/index.php/t-182942.html</a></p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123879&amp;1=default&amp;2=en&amp;3=" token="6Z0KgvKWivFIvUnwD5n0BqxtD0wyizEjfE_yEN8r0Ak"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Jim H. (not verified)</span> on 15 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123879">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123880" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242405288"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p><i>A describable number is a number for which there is some finite representation. An indescribable number is a number for which there is no finite notation.</i></p> <p>An "indescribable number", however, does have a form.. it's simply an infinite form, contrary to this statement:</p> <p><i>But the fact is, the vast, overwhelming majority of numbers cannot be written down in any form.</i></p> <p>Perhaps I am picking nits, but when you say cannot be written in any form, to me that sounds like it has <i>neither</i> a finite <i>nor</i> an infinite representation. That is, it must have no representation at all. I do not believe that any number has no representation in this sense.</p> <p>Indeed, any number (real or complex) could be realized (or represented if you prefer) as a limit point of a sequence. (#31 alludes to this). To me that is perfectly acceptable from... especially since those numbers you define as describable form a set of measure zero.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123880&amp;1=default&amp;2=en&amp;3=" token="USKOA8jynBVcBy1KxOn5s-48aIraQVVkEagxnvoOgr8"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Paul (not verified)</span> on 15 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123880">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123881" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242405665"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Erick: two different kinds of infinity there.</p> <p>The infinity of the natural numbers is referred to as "Aleph 0", a "countable" infinity. The real numbers have a larger infinity, which the naturals have no bijection (one-to-one and onto) mapping. We can write a countable infinity of numbers, but that still leaves an uncountable infinity of inexpressible Reals left.</p> <p>Weirdly, the inexpressable reals DO have a one-to-one and onto mapping to the whole of the reals. (Encountering this sort of weirdness for the first time often results in English majors giving up on higher math.)</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123881&amp;1=default&amp;2=en&amp;3=" token="ZdlXFDqkZEqGyRb7kwpllUpYBjYNVRog_JV28wuiV7g"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">abb3w (not verified)</span> on 15 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123881">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123882" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242406385"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p><b>Paul:</b> <i>Indeed, any number (real or complex) could be realized (or represented if you prefer) as a limit point of a sequence. </i></p> <p>The catch is, not every infinite sequence of rational numbers can be <b>finitely</b> represented. And if it can't be finitely represented, you can't write it.</p> <p>However, if you allow for infinite representations, yes; all real numbers can be expressed by some infinite sequence of digits after the decimal point.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123882&amp;1=default&amp;2=en&amp;3=" token="6HgjlrorZr0F3G3y2fkeZc_GNchZQUzE0vpn49cOSJ8"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">abb3w (not verified)</span> on 15 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123882">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123883" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242406509"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Would it not be easier to just look at the notion of representation without going on about computability. I think that the "computability approach" makes the picture to fuzzy.</p> <p>If we look at how we can write numbers down we just start by looking at how many different symbols we have at our disposal. We can agree that there is a finite set of symbols but just in case we assume that there are a countable infinite amount of symbols.</p> <p>Now we piece our symbols together to strings. We can agree that a string can at most have a countably infinite amount of symbols.</p> <p>So how many numbers can we represent by such a string?</p> <p>The answer is countable infinite and therefor we can not represent all existing numbers since there are an uncountably infinite amount of real numbers.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123883&amp;1=default&amp;2=en&amp;3=" token="tededQyU5auIbnzzPnb_rWCmVXbzWRWGAo5JjDo4RDM"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Arne (not verified)</span> on 15 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123883">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123884" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242406932"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>So my argument above would show that even if we allow an infinite amount of decimals we still could not represent every number. So there is a more profound result than that there are numbers representable by any FINITE string of symbols.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123884&amp;1=default&amp;2=en&amp;3=" token="Nd0APy3v6cBUhYg5cLP9CvawV8QH_X-OX7rBSMwHF68"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Arne (not verified)</span> on 15 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123884">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123885" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242407840"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Paul (34):</p> <p>That's all well and good, but it's kind-of circular:</p> <p>Finite representations give us a 'bridge' between the concrete and the abstract - they can be encoded in a computer's memory, or a human mind (modulo some annoying philosophical gymnastics), and then 'operated on'.</p> <p>On the other hand, an infinite representation of, say, an infinite set isn't any more accessible than just the set itself.</p> <p>(I suppose one response to all this 'finitude chauvinism' would be to imagine a universe where memories were infinite, and computers/minds could do computations requiring infinitely many steps and return a result. Perhaps time in this universe would look like the "long line" in topology.)</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123885&amp;1=default&amp;2=en&amp;3=" token="Zisk0G6-zYSFApWcMnXh8hFTCoZhGjskmospZd5n2dw"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Neil F (not verified)</span> on 15 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123885">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123886" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242408208"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>I remember when I first realized that the set of numbers which could be described is countable. It was very disturbing just how big this whole uncountability concept makes things.</p> <p>I imagined some neo-Lovecraftian story involving a horror from the beyond driving mathematicians mad by pressing an undescribable number in all of it's detail into their minds.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123886&amp;1=default&amp;2=en&amp;3=" token="ULAYDQYXJjcBPDB9e1Ov-_gV9t7fjHibePAIsLPGYmg"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://snowplow.org/martin" lang="" typeof="schema:Person" property="schema:name" datatype="">Daniel Martin (not verified)</a> on 15 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123886">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123887" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242410787"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Arne (38): That isn't so surprising. After all, if I count each possible word as a "letter" then I have a countably infinite alphabet.</p> <p>But whether I classify them as words or letters doesn't change the number of possible sentences.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123887&amp;1=default&amp;2=en&amp;3=" token="7sqlLTC8j4PPDB_RbJl35zWl_sPmjFv1BpMsi8hXfiE"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Neil F (not verified)</span> on 15 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123887">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123888" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242412127"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Moment, please:<br /> As we had the pleasure to learn reals in school by nested<br /> intervals from rationals, can I construct Omega by it ?<br /> And what about Dedekind cuts and decimal expansions ?</p> <p>I find it a bit furtive to imply that Omega certainly belong to real numbers without mentioning how the reals<br /> in question were constructed.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123888&amp;1=default&amp;2=en&amp;3=" token="JAovebPt-LpRUHUASbW4ia5iAdwpWim1KoAV8vQA1Io"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">TSK (not verified)</span> on 15 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123888">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123889" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242413675"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>"We know that they're there; we can prove that they're there."</p> <p>So we could inductively prove their existence, but not deductively, the limits to computational power could also be indicative of the constraints to notational systems in cognitive situations.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123889&amp;1=default&amp;2=en&amp;3=" token="o3VyZAq3HqopwNQ90GR-ZoeZb31zeFvt4AnI2LZmJc8"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">isotelesis (not verified)</span> on 15 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123889">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123890" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242414494"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><blockquote><p>Just use computable math and intuitionistic logic, leave all the other numbers and classical logic to the mathematicians.</p> <p>No infinity, no problem.</p></blockquote> <p>i = 0;<br /> while (1) {<br /> ++i;<br /> }</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123890&amp;1=default&amp;2=en&amp;3=" token="VcAu20PM6b1PS2DW0LspIHEBpCMpqwiYiWNI8w0T0p8"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Michael Ralston (not verified)</span> on 15 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123890">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123891" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242417069"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>I think this is somewhat addressed by Interval Arithmetic....<br /> <a href="http://en.wikipedia.org/wiki/Interval_arithmetic">http://en.wikipedia.org/wiki/Interval_arithmetic</a></p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123891&amp;1=default&amp;2=en&amp;3=" token="IiHaucJ0YrLk0mv_OAXZh0-9MBPRMWmQVOfJUETSGRU"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://perfcap.blogspot.com" lang="" typeof="schema:Person" property="schema:name" datatype="">Adrian Cockcroft (not verified)</a> on 15 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123891">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123892" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242418196"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>#13, a program does not have to finish in order to have output. This Perl program never halts, but has plenty of output: <code>print "hello world\n" while 1;</code></p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123892&amp;1=default&amp;2=en&amp;3=" token="-IWXZy9XlCEEbBHqy18uRuq6xmcaPhx9ueOr3wU-mWM"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://wonkden.net" lang="" typeof="schema:Person" property="schema:name" datatype="">Chas. Owens (not verified)</a> on 15 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123892">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123893" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242422208"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>This is the same proof that most numbers are transcendental because there are only as many rational polynomial equations as integers. All computer programs can be reduced to Turing machine programs and there are only as many Turing machine programs as integers. If you count programs that halt or don't halt or blink the little green lights on your Turing machine in a certain pattern, it doesn't matter. At most, you have as many programs as integers.</p> <p>There are just a whole lot more real numbers than integers.</p> <p> In fact, there are so many more real numbers than integers that you can do almost all of real number mathematics without the algebraic (non-transcendental) numbers and without the rationals and without the representables.</p> <p>Now, are unrepresentable numbers interesting? Consider the smallest unrepresentable number. That number is clearly interesting ...</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123893&amp;1=default&amp;2=en&amp;3=" token="f_5Zb53OhnnfqF-riWz2VG2TBSVSYc0AVYzMaODbMwY"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Kaleberg (not verified)</span> on 15 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123893">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123894" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242429400"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Re #47:</p> <p>Reminds me of an old UNIX fortune:</p> <p>Consider the set of all numbers that haven't been considered before ... wait, they're all gone!</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123894&amp;1=default&amp;2=en&amp;3=" token="fDWUj7bTosUHBQaAjFVHdzvwYF-D4D8TVPp-4yJzp-Y"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Jim H. (not verified)</span> on 15 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123894">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123895" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242447370"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>What I was trying to get at with my post is that the entire discussion above is that there are numbers that are not finitely representable. It is even given in MarkCC's post:</p> <p>"A describable number is a number for which there is some finite representation. An indescribable number is a number for which there is no finite notation."</p> <p>I think it misses the point to talk about numbers that have no finite representation. The interesting numbers in this context are those that have no representation at all, finite or infinite.</p> <p>Also since I in my proof above allowed for an countable infinite amount of symbols and specified no method of representation we find that most numbers are not describable by decimal expansion. But not only by decimal expansion. They are not describable by any equation or computer program, even IF we allow for the equation / computer program to be infinitely long.</p> <p>From original post:<br /> "In theory, any number can be represented by a summation series of rational numbers."</p> <p>It can not both be that this is true and that my argument is correct so I'm going to ask MarkCC to elucidate on this a little.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123895&amp;1=default&amp;2=en&amp;3=" token="ZP06BizPPiAyv4nfmlq_oNO7KbdpiCmRxXLAnWJkVfU"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Arne (not verified)</span> on 16 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123895">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123896" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242451463"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Arne:</p> <p>I see the error now.</p> <p>If your representations include infinitely long strings of digits then in fact the number of possible representations is *uncountably* infinite. This is what Cantor's diagonal argument establishes.</p> <p>Also, as I said in (38): The whole point about finite representations is that they can be stored and manipulated here in the physical world (by minds and computers). On the other hand, an infinite representation is just as 'remote' from us as the thing it represents.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123896&amp;1=default&amp;2=en&amp;3=" token="qO-Hjwy10Aj04BB2u528B11UYwLTnMW-Mkoo2xZJYZA"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Anonymous (not verified)</span> on 16 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123896">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123897" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242452408"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>47: Surely there isn't such a number? There are non-describable numbers in any nontrivial interval of the reals, so the infimum of all non-describables is -infinity (and therefore not a number at all), and that of all positive non-describables is zero (and therefore describable). Which means neither set has a minimum... neither does any subset of the non-describables that you can finitely describe, because if the infimum (or supremum, or essential infimum/supremum, or just about anything else you can ask for) of such a set is a real number, it's obviously describable.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123897&amp;1=default&amp;2=en&amp;3=" token="37AbEMKIIwYlIIQ8cxYg0opHQkNLfqk2A72dkqhpXMI"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Rowboat (not verified)</span> on 16 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123897">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123898" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242463920"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>What is a notation system?</p> <p>I take it that the English language doesn't count? If it did, it would seem like you can describe at least one indescribable number as follows: "The first positive indescribable number."</p> <p>Though I just realized that description might not uniquely describe any number if, given one indescribable number, there's always another one between it and zero.</p> <p>And no similar description would pick out an indescribable number uniquely if, given any pair D and I where D is describable and I is indescribable, there is a B which is indescribable and which is between D and I.</p> <p>Which seems plausible.</p> <p>Never mind then.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123898&amp;1=default&amp;2=en&amp;3=" token="xIheGV8xt8jEGCLDkoLsFLHZgahPoN_1G3uM05yUTeQ"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://ex-cog.blogspot.com" lang="" typeof="schema:Person" property="schema:name" datatype="">Kris Rhodes (not verified)</a> on 16 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123898">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123899" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242466034"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Kris:</p> <p>Replace "smallest indescribable real number" with "smallest indescribable <a href="http://en.wikipedia.org/wiki/Ordinal_number">ordinal</a>" and you have your paradox.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123899&amp;1=default&amp;2=en&amp;3=" token="NaiPvGcP26Zmy7Sh10AUwsAqqUZR7fw17sUHBBd7Hv8"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Neil F (not verified)</span> on 16 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123899">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123900" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242515124"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Its probably already been pointed out (I didn't read all the comments thus far) that this concept was the focus of a paper written by Alan Turing in 1936. In the process of inventing the computer, he already realized the shortcomings of computers in that they can only deal in "computable" reals. He recognized that even irrational numbers, although having infinitely many digits, they can possibly have a finite representation, and are thus computable. Unfortunately it can be shown via Borel measures that when randomly selecting a real number from a unit measure it is infinitely improbable that the selected number would be a "computable" real. There is an excellent lecture by Gregory Chaitin on these very ideas here: </p> <p><a href="http://www.youtube.com/view_play_list?p=6A6833CBFA87B5C8">http://www.youtube.com/view_play_list?p=6A6833CBFA87B5C8</a></p> <p>Great blog, Mark. Keep it up.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123900&amp;1=default&amp;2=en&amp;3=" token="paUn2mENh0UG_odIB0tBhAlmM-rp6clK6zAvqYZHHDo"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Eudoxus (not verified)</span> on 16 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123900">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123901" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242524431"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Neil - what you described requires the Axiom of Choice, if I'm not mistaken.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123901&amp;1=default&amp;2=en&amp;3=" token="f_PjXLbOGZ3Xq7uCQxR7MTdLy1qbwIzpq5UhtxA6Cn4"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Quercus (not verified)</span> on 16 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123901">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123902" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242566881"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>You state, in your definition of an 'indescribable' number, that 'given the first K numbers in that series, there is no algorithm that can tell you the value of the K+1th rational. '</p> <p>You can write a very simple algorithm which, given the first K values in the decimal expansion, writes down all 10 possible K+1 values. How this basic counter-example could have been overlooked is baffling.</p> <p>The very fact that a decimal expansion exists means that the number is computable, so your argument makes no sense.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123902&amp;1=default&amp;2=en&amp;3=" token="w_LF73_dbDpC3kCONwHxJiwxrn4nZZznlHfuUv85clI"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">some guy (not verified)</span> on 17 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123902">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123903" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242568058"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>You need to include in your definition that the program has to halt. If it acts like you say, that 'It doesn't matter whether that program ever finishes or not', then the program I described above satisfies your conditions.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123903&amp;1=default&amp;2=en&amp;3=" token="rdkXEEJWv6LZRm4GjQBD4jk_B8IyDcQq7j8_Rvj5sys"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">some guy (not verified)</span> on 17 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123903">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="138" id="comment-2123904" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242569774"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Re #66,67:</p> <p>The "program" you describe doesn't output a specific number. The definition of a describable number (or at least, the definition that I'm using for this post) is that there exists a program which generates <em>that number</em>, and <em>only</em> that number - that is, that there is a program which is a <em>description</em> of the number.</p> <p>You can write a program that generates all of the finite rational sequences - but it will never generate an infinite one. And there's no program that uniquely <em>specifies</em> or <em>describes</em> an indescribable number.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123904&amp;1=default&amp;2=en&amp;3=" token="UMZKxZudnpytMT1ZVVt1ztUeHFO-KlenW0esL59NS_4"></drupal-render-placeholder> </div> <footer> <em>By <a title="View user profile." href="/goodmath" lang="" about="/goodmath" typeof="schema:Person" property="schema:name" datatype="">goodmath</a> on 17 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123904">#permalink</a></em> <article typeof="schema:Person" about="/goodmath"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/goodmath" hreflang="en"><img src="/files/styles/thumbnail/public/pictures/markcc.jpg?itok=PmLQEFZp" width="92" height="100" alt="Profile picture for user goodmath" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123905" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242594336"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Or, to put it another way: almost all numbers are boring.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123905&amp;1=default&amp;2=en&amp;3=" token="0F5zMYk0-m0IFgYUkdYtbeqtLWJIyhdKe260cb4Y-As"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Paul Murray (not verified)</span> on 17 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123905">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123906" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242618719"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>I suspect a clearer definition is one in terms of limits. The definition of a computable number x is one for which you can produce an function of N and some N such that for any ε, f(N)-x &lt; ε. With an indescribable number there is no such f. There may be particular ε that you can find an f and an N, but no general case.</p> <p>Something I wonder in relation to the genetic algorithm comment is whether you can produce a program that will produce a correct limit for a given ε with some probability p that is better than guessing. i.e. if you have a value for ε, can you produce a value for 0.1ε with p &gt; 0.1.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123906&amp;1=default&amp;2=en&amp;3=" token="c6spDq2_H5DWJY299qRpQT7usbSQx2nIm0RYrW2t1vQ"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Stephen Jones (not verified)</span> on 17 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123906">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123907" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242625605"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Interestingly, there is a famous paradox lurking in the vicinity of the point in this post - take the sentence "The smallest positive integer not definable in under eleven words." Well, there is such an integer, isn't it? But I just described it using less than eleven words.</p> <p>Many people, on encountering Berry's paradox, think it's kinda silly (just as they do with the liar which trades on the same semantic knot). What's utterly awesome, however, is the way Boolos used this one to give the until now by far shortest proof of Gödel's incompleteness. The idea behind the proof is to hold a proposition that holds of x if x = n for some natural number n to be a definition for n, and then show that the set {(n, k): n has a definition that is k symbols long} is representable with Gödel numbers. "m is the first number not definable in less than k symbols" can thus be formalized and shown to be a definition.</p> <p>Ok. I'm not sure this is related too closely to the discussion at hand (but it is related to the title of the post), but wanted to share it anyway.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123907&amp;1=default&amp;2=en&amp;3=" token="Oh0n92T27BksbLsw4N0KOwxduL7QXvAkxc3n7Du8DEs"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">G.D. (not verified)</span> on 18 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123907">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123908" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242638547"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p><b><a href="#comment-1636050">TSK</a>:</b> <i>As we had the pleasure to learn reals in school by nested intervals from rationals, can I construct Omega by it ? And what about Dedekind cuts and decimal expansions ?</i></p> <p>Yes, you can construct Omega that way... once you figure out how to construct the set of all Turing Machine programs that halt. Which, finitely, you can only do by axiom. Which acts as an Oracle, acting to increase the power of your Ï to a hyper-Ï, and giving you the possibility of a hyper-Omega.</p> <p>Repeat ad infinitum et nauseam.</p> <p><b><a href="#comment-1636680">Arne</a>:</b> <i>It can not both be that this is true and that my argument is correct</i></p> <p>Your error is in presuming that all sequences of rational numbers have a finite representation.</p> <p><b><a href="#comment-1639801">Stephen Jones</a>:</b> <i>The definition of a computable number x is one for which you can produce an function of N and some N such that for any ε, f(N)-x</i></p> <p>...where ε is a <b>rational</b> number; and |f(N)-x|, if you want computables and not merely computable Reals. The computables spill out into the Complex plane, too.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123908&amp;1=default&amp;2=en&amp;3=" token="mFzd9XB_iWqNjZpUW2rSr6xxGkeXDNJiT7UhnESXh5I"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">abb3w (not verified)</span> on 18 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123908">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123909" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242668222"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>"All sorts of things that we count on as properties of real numbers wouldn't work if the indescribable numbers weren't there. But they're totally inaccessible." Sometimes it's good to remember what Cantor himself believed: that numbers have an "intrasubjective and immanent reality." Perhaps there is a reason why they chose the following words when they put up a plaque in Halle commemorating Cantor's innermost conviction that "the essence of mathematics lies in its freedom." - "No infinity, no problem?" No infinity, no cry? Cantor didn't mind shedding a few tears over the beauty of the inaccessible. These tears can be thought of as dense and indescribable as the reals.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123909&amp;1=default&amp;2=en&amp;3=" token="ME7NnLeqpnczEQz1YKEGIp7uBX_ejgGIlWQIe8jydaw"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://cameliaelias.blogspot.com/" lang="" typeof="schema:Person" property="schema:name" datatype="">Camelia Elias (not verified)</a> on 18 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123909">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123910" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242682501"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Whether the program halts or not is not an issue. The program does not have to halt. A program that computes all the digits of pi or the square root of two never halts. There is no last digit in either case.</p> <p>The problem is that there are not enough programs. A program is an integer. There are only so many integers. There are many, many more real numbers. Programs always produce the same output each time they run. That means that there are lots of numbers out there that you cannot write a program to compute.</p> <p>This is just like our host's discussion of compression algorithms. There are more long strings than short strings, so any algorithm that maps lots of long strings into shorter strings will actually have to map lots of short strings into longer strings. It's just counting.</p> <p>If we want to get around this, we have to define a mechanism for programming in which the programs are real numbers, not integers.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123910&amp;1=default&amp;2=en&amp;3=" token="24YKN9_Gws42qSFUihRomyvclc-pir3zyKP9BWHHTc4"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Kaleberg (not verified)</span> on 18 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123910">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123911" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242714916"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>It's possible to write descriptions that always halt.</p> <p>For example, say that a function f of one variable describes a real number y iff, for any x &gt; 0, f(x) terminates and |f(x)-y| &lt; x</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123911&amp;1=default&amp;2=en&amp;3=" token="Qnf8C3HfUANDsboMbOp26l9oGxskVI4NWh1Bh1fMSvg"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Freak (not verified)</span> on 19 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123911">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123912" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242825862"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>If those numbers are 'undescribable' and 'inaccessible', what are they usuful for? Can we define the set of all describable reals and prove the essential theorems about reals for that set?</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123912&amp;1=default&amp;2=en&amp;3=" token="NkoF-_NsTzmVODyr-zbVJAUqWBfF4NxuO-ASttBesaI"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://mustelinae.net" lang="" typeof="schema:Person" property="schema:name" datatype="">Boris (not verified)</a> on 20 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123912">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="138" id="comment-2123913" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242826293"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Re #66:</p> <p>Who said that things need to be useful?</p> <p>Seriously, the basic definitions that we use for real numbers<br /> necessarily imply that those numbers exist. You lose an awful lot of basic stuff when you try to create a reduced set of real numbers. People have done work on computable numbers, which are close to the definition of describable numbers, and you *can* do it, but it's a lot of work, and it's clear that you're really constructing a subset of the numbers. The fact that they're conceptually there is pretty<br /> much unavoidable.</p> <p>You can drop the irrationals entirely, and wind up with the rational numbers. They work pretty nicely for lots of things. But algebra breaks: a polynomial of degree N no longer has N roots, because there is no rational number that can solve many of them. In a universe of rational numbers, where does Y=2-X2 cross the X axis?</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123913&amp;1=default&amp;2=en&amp;3=" token="Wlgbg7GGKlIBNqLvM8ilRmGexXm_knXGXoQz4rDKBs4"></drupal-render-placeholder> </div> <footer> <em>By <a title="View user profile." href="/goodmath" lang="" about="/goodmath" typeof="schema:Person" property="schema:name" datatype="">goodmath</a> on 20 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123913">#permalink</a></em> <article typeof="schema:Person" about="/goodmath"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/goodmath" hreflang="en"><img src="/files/styles/thumbnail/public/pictures/markcc.jpg?itok=PmLQEFZp" width="92" height="100" alt="Profile picture for user goodmath" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123914" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242878704"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>The original critique of Dembski said: "<i>Unfortunately, most real numbers are undescribable. There is no notation that accurately represents them. The numbers that we can represent in any notation are a miniscule subset of the set of all real numbers. In fact, you can prove this using NFL.</i>"</p> <p>Could you clarify how this is proved using the NFL theorem?</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123914&amp;1=default&amp;2=en&amp;3=" token="sO2TyN9h6hQgzKRL5EEgIEoIDHwsU5OzS8vPgN9kkAM"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Erik 12345 (not verified)</span> on 21 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123914">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123915" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1242899873"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>There is a related thread now at the n-Category Cafe blog ("boundless" is in its title, something like "Bounding the Boundless") about the philosophical history of Infinity, with special attention paid to Giordano Bruno, Isaac Newton, Isaac Barrow, and Isaac Asimov.</p> <p>It might be fun for some readers here to read that also, and comment there as well as here.</p> <p>n-Category Cafe has blogmasters expert in Mathematical Physics, Philosophy of Mathematics, and Computation Theory.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123915&amp;1=default&amp;2=en&amp;3=" token="iZKpKgIB1-UwgqFI6s0lTuGSv8XJXES6fgJ8NbDo1Fk"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://magicdragon.com" lang="" typeof="schema:Person" property="schema:name" datatype="">Jonathan Vos Post (not verified)</a> on 21 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123915">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123916" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1243010413"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>JC wrote:</p> <p>&gt; What if the program describing the number *isnt* finite, but can be described itself by a finite program? Like a genetic algorithm, for example.</p> <p>This doesn't work. Where are the random numbers coming from? The Turing Machine is deterministic, remember. There's just the symbols on the tape, and a fixed set of rules. If the random numbers aren't included in the program, then it can't do anything; if they're included then you run into the same problem as for other programs.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123916&amp;1=default&amp;2=en&amp;3=" token="2ZE2WrCMXJPGUqBJLnLt6fG0FVlXzDLg6eHBny-BrPM"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">gwern (not verified)</span> on 22 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123916">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123917" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1243082240"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>What???</p> <p>:)</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123917&amp;1=default&amp;2=en&amp;3=" token="NxaQlqCy3npETK8rsxnS0bkApzV43Ml-Bvw0cJkGO5E"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">saed (not verified)</span> on 23 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123917">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123918" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1243235845"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>"Re #3:</p> <p>That's not an escape. It comes back to basic computation theory: if you could write a program that generates a program that does X, you can write a program that does X.</p> <p>If you could write a program that could generate an infinitely long program that generated a number, you could bypass the middle step and just write a program that generated the number. "<br /> It is at least not so simple, because math theorems You mention about are regards first order logic. So if You where able to made some validity of second ( or higher) order logic programming, things may be quite different. The most iportant thing in Your post is conception of computality, which is only just that: conception with stright and tight definition.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123918&amp;1=default&amp;2=en&amp;3=" token="66pS-9sCildi54b4aqCzxqmnsfQjVV51v5tVepGH0zA"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">kazek (not verified)</span> on 25 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123918">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123919" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1243375772"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>In a finite universe, are there undescribable integers?</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123919&amp;1=default&amp;2=en&amp;3=" token="ENneTiHulv9jQi5TmEgww5WogJtPXW6eep1vDjgv_7g"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Kevin (not verified)</span> on 26 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123919">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123920" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1243439914"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Kevin @ 73 asks:<br /> "In a finite universe, are there undescribable integers?"</p> <p>Rather than quibble about whether "finite" means space, or time, or both, and whether "undescribable" applies to integers exactly as it does to reals, then YES.</p> <p>If there are N possible states of the finite universe, then there are at most N descriptions of integers that can occur in any given state of the universe. Hence there are no more than N describable integers. So if I have a set of N+1 distinct integers, including each of the N describable integers, then that set must contain an undescribable integer.</p> <p>That is motivational, and not crisp enough to be axiomatical, but you see why I say "YES!"</p> <p>And you should also see why it gets back to "compressibility" as Marc CC has explained it.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123920&amp;1=default&amp;2=en&amp;3=" token="i8Y7tBk_NIWpOohZOIS-honkOYRgiirPjyPpVvLIMpM"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://magicdragon.com" lang="" typeof="schema:Person" property="schema:name" datatype="">Jonathan Vos Post (not verified)</a> on 27 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123920">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123921" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1243601826"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>In your proof, you state "The number of programs for any effective computing device is countably infinite...." Remembering the roots of programming in analogue computers, the voltages, resistors, potentiometers, etc. could take arbitrary values in the set of Reals. As such, I would argue that *some* computing devices have an uncountably infinite amount of possible programs.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123921&amp;1=default&amp;2=en&amp;3=" token="k6gaGomjTnBDLG_1LKYurQXf2YRsIofctwS1hjXxevk"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Adam Shaver (not verified)</span> on 29 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123921">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123922" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1243684698"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>I took a random walk through the blogosphere and found a site with a nest of posts regarding indescribable numbers, Berry's Paradox, incomputability, Turing machines and "compressibility". And I, having small mathematical ability but some acquaintance with Douglas Hofstadter, I took the "road" (read explanation of the improbable) less intuitively obvious.<br /> Great site and comments.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123922&amp;1=default&amp;2=en&amp;3=" token="NEaL9eUnGht_1dDnkq9UvbBopOTZ5HnP3vIF6gJJUt0"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Tom Clary (not verified)</span> on 30 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123922">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123923" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1244742300"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>plain and simple kids, if you want indescribable numbers, look for numbers which no algorithm could generate. pi can be described by geometry, hence its identity is known and can be clearly written in code. indescribable numbers can be irrational and/or infinite and rely on currently non-existing logical framework. </p> <p>an interesting question: is it possible to prove all the limits of our algorithms and hence locate where all the indescribable number definitions/generators lie?</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123923&amp;1=default&amp;2=en&amp;3=" token="ZSPZ5JZCMo9A3pSZ0ZJ4qLmE1RjRNF-UEtV0TnNq-P8"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">jman (not verified)</span> on 11 Jun 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123923">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123924" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1245415762"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Partial randomness and dimension of recursively enumerable reals<br /> Authors: Kohtaro Tadaki<br /> (Submitted on 15 Jun 2009)<br /> <a href="http://arxiv.org/abs/0906.2812">http://arxiv.org/abs/0906.2812</a></p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123924&amp;1=default&amp;2=en&amp;3=" token="PYCUVYlmweA45BX22DzjLH3B2W06KZ6egeFVT3O9dLU"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://magicdragon.com" lang="" typeof="schema:Person" property="schema:name" datatype="">Jonathan Vos Post (not verified)</a> on 19 Jun 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123924">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123925" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1248794770"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>#5: pi is easy to describe. It is, as you sure know, the ratio of radius to the circumference of a circle. A perfectly valid description. MCC never said that it has to be described in the decimal system, in fact he stated the opposite.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123925&amp;1=default&amp;2=en&amp;3=" token="qVNjuTPbp0fLG8fw7LVhbP8C2WbqO5_zYMAVJERtQxk"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Mike (not verified)</span> on 28 Jul 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123925">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123926" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1249388155"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Can you write the these numbers or represent these numbers in Mayan?</p> <p>54 or 1954?</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123926&amp;1=default&amp;2=en&amp;3=" token="zVYmWl0eoLpRVnxS2IELR2N3vC34oUHWxmS7u19JH0w"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Patrick (not verified)</span> on 04 Aug 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123926">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123927" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1254017735"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>If I take a stick that is 28 inches long and I use my dividers/compass to divide it into 6 equal sections, I will be successful. I can physically divide a 28 inch long rod into 6 equal sections. But I can't divide 28 by 6 on paper. Math seems to need some improvement. Our base 10 system does not seem to work. We need some other way to talk about numbers.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123927&amp;1=default&amp;2=en&amp;3=" token="JdLBRBSzghVebYIegChZxFK8LQmbB7uJ8rfKQ5bfsTs"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Casey (not verified)</span> on 26 Sep 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123927">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123928" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1254055652"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><blockquote><p>But I can't divide 28 by 6 on paper.</p></blockquote> <p>sure you can. 28/6 = 14/3 exactly; there's nothing wrong or odd about fractions. use a smart enough calculator and it'll throw that expression into exact fractional format for you, no questions asked.</p> <blockquote><p>Our base 10 system does not seem to work</p></blockquote> <p>no worse than any other positional-value number system. one key insight is that number bases really aren't as fundamentally important as we sometimes think they are. in many ways, strings of digits with an optional decimal point is just a notational convention; it's not something that defines what numbers really are.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123928&amp;1=default&amp;2=en&amp;3=" token="r8aFIU4EoJwf3btVGzkbEOnAIAJvoboDYaefow94AY0"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="" content="nomen-nescio.myopenid.com">nomen-nescio.m… (not verified)</span> on 27 Sep 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123928">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123929" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1254166005"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Indescribable numbers don't exist unless you can <i> give an example.</i></p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123929&amp;1=default&amp;2=en&amp;3=" token="N_PmQDat3pHgwF_J3kFRygtd6Y8wcshoFHjQrWMHf-Y"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Michael Mather (not verified)</span> on 28 Sep 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123929">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123930" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1254206475"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>@83</p> <p>There are some mathematicians who work with 'constructive' mathematics whou wouold agree with you. They work with the intuitionistic variety of logic in which the law of the excluded middle ( A or Not A ) does not apply.</p> <p>However most mathematicians work with 'classical' logic in which, to prove the existence of something, it is sufficient to show that a contradiction would result if it did not exist. By definition, no example of an indescribable number can be given - so you cannot constructively prove they exist, but if they did not exist, then you can prove a contradiction with the definition of the real numbers (as a complete, archimedean, ordered field).</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123930&amp;1=default&amp;2=en&amp;3=" token="YC-4kXvSzzlxubj75P3_nevdF0aRjdbCrXAaUNEGDYQ"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Roger Witte (not verified)</span> on 29 Sep 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123930">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123931" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1256116653"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>I believe this is a direct consequence of the Borel-Cantelli lemmas. In that if x is an irrational, and p/q is rational in lowest terms, then |x - p/q|&lt; 1/q^2, but if you want to approximate it better, then the set of p/q such that |x-p/q|&lt;1/q^(2+e) is a null set for any e&gt;0.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123931&amp;1=default&amp;2=en&amp;3=" token="03CRcFL2ZTj3eCs-3WrIa6ivHPudAc9yGkTU5L6mMzI"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">vlad (not verified)</span> on 21 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123931">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123932" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1256124352"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>jman said:</p> <p>&gt; plain and simple kids, if you want indescribable numbers, look for numbers which no algorithm could generate.</p> <p>It's certainly not so plain and simple, after all you got it wrong. In fact, Chaitin's main claim to fame is a number named after him that is describable but that no algorithm could generate.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123932&amp;1=default&amp;2=en&amp;3=" token="B7faY2PafJem9XGn4qKgxq5x_ZYuNQZU1pSTPS7wKF4"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">madatorque (not verified)</span> on 21 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123932">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123933" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1256126132"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>This argument really says that Turing Machines cannot write down all numbers.</p> <p>The jury is still out as to whether or not humans have "free will" and I think that, if we do, we don't know if it would be Turing Equivalent. </p> <p>So it's supposedly conceivable that a human might be able write down all possible numbers -- or am I missing something?</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123933&amp;1=default&amp;2=en&amp;3=" token="swS1Du2GN7_CF3Eub-87GYx3J5A308jrry1zGyKaJys"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://bradconte.com" lang="" typeof="schema:Person" property="schema:name" datatype="">B-Con (not verified)</a> on 21 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123933">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="138" id="comment-2123934" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1256126389"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>@87:</p> <p>You're missing something.</p> <p>What the "undescribable" thing really means is that <em>no notation</em> can possibly represent the vast majority of numbers. And since any combination of a finite number of notations is still a notation, then no finite <em>combination</em> of notations can possibly represent the vast majority of numbers. </p> <p>If you start allowing an infinite number of notations, then things start getting weird. But still, you wind up with even any combination of a <em>countably infinite</em> number of notations can't represent most numbers.</p> <p>So you end up with the fact that to represent all numbers, you need an uncountably infinite number of notations. And if you do that, you wind up right back where you started: now you have <em>undescribable notations</em>.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123934&amp;1=default&amp;2=en&amp;3=" token="Mk1piEwGpaEvgJTEjNIJMZcYYlKDONMV9pC2OnPo5G4"></drupal-render-placeholder> </div> <footer> <em>By <a title="View user profile." href="/goodmath" lang="" about="/goodmath" typeof="schema:Person" property="schema:name" datatype="">goodmath</a> on 21 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123934">#permalink</a></em> <article typeof="schema:Person" about="/goodmath"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/goodmath" hreflang="en"><img src="/files/styles/thumbnail/public/pictures/markcc.jpg?itok=PmLQEFZp" width="92" height="100" alt="Profile picture for user goodmath" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123935" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1256126406"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>I have a problem with the statement: "The number of programs for any effective computing device is countably infinite..." </p> <p>This is true only if all programs are finite. Otherwise, it's trivially not true. Let Y be the set of all programs. Let X be the set of all finite subroutines (a library of all finite subroutines if you like). This set is at least countably infinite and also this set is a subset of all programs Y, since some programs consist of single finite subroutine. </p> <p>But, the power set of P(X) (i.e. set of all subsets of X) is also subset of Y, for every combination of subroutines from X forms a (possibly infinite) program. But the power set P(X) in uncountably infinite if X is countably infinite (which it is). Since we have shown that P(X) is subset of Y, so Y must be uncountably infinite.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123935&amp;1=default&amp;2=en&amp;3=" token="1vreR_X9KF6vCr0b3GJJf40K9jG74lw3dqOuT395To8"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Mario (not verified)</span> on 21 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123935">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123936" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1256131536"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Mark,</p> <p>You are making this more confusing than it needs to be. You defined your representations to be finite. You then say one way to approach this is to consider programs generating these representations. But if the representations are finite, this adds nothing. You can simply write programs that print out the representation. Talking about programs adds nothing. Programs only become interesting if you consider infinite representations (like decimals) because then you can generate some of those with finite programs. Every finite string is computable so talking about computers simply adds a level of indirection.</p> <p>My main point is that computability is not the same as describability but you're giving the impression it is. (Consider, eg. Chaitin's constant.) In fact, I think you ought to have made this distinction clearer.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123936&amp;1=default&amp;2=en&amp;3=" token="YoAiLjRiI_3AxVtFn-1w5YLLUNxf3e260QRpojzkXHA"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">JJ (not verified)</span> on 21 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123936">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123937" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1256139859"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>#2: To put it another way:</p> <p>Natural numbers (countably infinite) â programs that run â programs that terminate</p> <p>Assuming that some of the outputs of the last set of programs are unique descriptions of numbers, that can't describe all numbers, since a subset of a countably infinite set can't cover an uncountably infinite set. That still holds if each output is a description of a finite number of numbers, since the union of a finite number of countably infinite sets is itself countably infinite.</p> <p>What if a sequence of symbols could denote an infinite set of numbers, though? Would the above proof still hold? Does that depend on whether the set of possible encodings is countably or uncountably infinite?</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123937&amp;1=default&amp;2=en&amp;3=" token="2N8q8o6rW4qIy_8PiucSWp90xucrB6dZi7oNEBYK4yE"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://l33tminion.livejournal.com/" lang="" typeof="schema:Person" property="schema:name" datatype="">L33tminion (not verified)</a> on 21 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123937">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123938" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1256141593"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Actually, never mind that last bit. The set of possible encodings must be countable, since you can just take the (finite) set of characters currently used to encode meaning and start enumerating, a subset of those strings will describe all possible encodings.</p> <p>I'm pretty sure the cross product of two countably infinite sets is still countably infinite, so the proof above still holds even given that one output string can represent more than one number (possibly an infinite number of numbers).</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123938&amp;1=default&amp;2=en&amp;3=" token="v3l-zcXl5zidlCqZ5aMWGXPwglLKJmQ28K2RVD0Atz0"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://l33tminion.livejournal.com/" lang="" typeof="schema:Person" property="schema:name" datatype="">L33tminion (not verified)</a> on 21 Oct 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123938">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123939" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1260609264"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>I find the idea that <i>most</i> numbers are undescribable interesting. I was looking forward to reading about how you'd quantify. Wanna write a post on that?</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123939&amp;1=default&amp;2=en&amp;3=" token="BOOFjPBd3d12WNRDAakMURd9W9hgrAIzPi2JEp8RHNM"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://mathmamawrites.blogspot.com" lang="" typeof="schema:Person" property="schema:name" datatype="">Sue VanHattum (not verified)</a> on 12 Dec 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123939">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123940" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1261041311"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>this is one of my favorite topics related to numbers. It makes me think that the "real" numbers are oddly misnamed.<br /> I know that numbers aren't strictly "real", but still, if a number can never be used, can never even be talked about specifically, then what the hell is this number. how can this number even be said to BE something!</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123940&amp;1=default&amp;2=en&amp;3=" token="uF1VME1MgtsEPR35Vysa17FG_oOX6Gl_SE_FWi7vkUM"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">vila (not verified)</span> on 17 Dec 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123940">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> </section> <ul class="links inline list-inline"><li class="comment-forbidden"><a href="/user/login?destination=/goodmath/2009/05/15/you-cant-write-that-number-in%23comment-form">Log in</a> to post comments</li></ul> Fri, 15 May 2009 08:41:47 +0000 goodmath 92719 at https://scienceblogs.com Basics: Significant Figures https://scienceblogs.com/goodmath/2009/03/04/basics-significant-figures <span>Basics: Significant Figures</span> <div class="field field--name-body field--type-text-with-summary field--label-hidden field--item"><p> After my post the other day about rounding errors, I got a ton of<br /> requests to explain the idea of <em>significant figures</em>. That's<br /> actually a very interesting topic.</p> <p> The idea of significant figures is that when you're doing<br /> experimental work, you're taking measurements - and measurements<br /> always have a limited precision. The fact that your measurements - the<br /> inputs to any calculation or analysis that you do - have limited<br /> precision, means that the results of your calculations likewise have<br /> limited precision. Significant figures (or significant digits, or just "sigfigs" for short) are a method of tracking measurement<br /> precision, in a way that allows you to propagate your precision limits<br /> throughout your calculation.</p> <p> Before getting to the rules for sigfigs, it's helpful to show why<br /> they matter. Suppose that you're measuring the radius of a circle, in<br /> order to compute its area. You take a ruler, and eyeball it, and end<br /> up with the circle's radius as about 6.2 centimeters. Now you go to<br /> compute the area: π=3.141592653589793... So what's the area of the<br /> circle? If you do it the straightforward way, you'll end up with a<br /> result of 120.76282160399165 cm<sup>2</sup>.</p> <p> The problem is, your original measurement of the radius was<br /> far too crude to produce a result of that precision. The real<br /> area of the circle could easily be as high as 128, or as low as<br /> 113, assuming typical measurement errors. So claiming that your<br /> measurements produced an area calculated to 17 digits of precision is<br /> just ridiculous.</p> <!--more--><p> As I said, sigfigs are a way of describing the precision of a<br /> measurement. In that example, the measurement of the radius as 6.2<br /> centimeters has two digits of precision - two <em>significant<br /> digits</em>. So nothing computed using that measurement can<br /> meaningfully have more than two significant digits - anything beyond<br /> that is in the range of roundoff errors - further digits are artifacts<br /> of the calculation, which shouldn't be treated as meaningful.</p> <p> The rules for significant figures are pretty straightforward:</p> <ol> <li> Leading zeros are <em>never</em> significant digits. So in "0.0000024", only the "2" and the "4" could be significant; the leading<br /> zeros aren't.</li> <li> Trailing zeros are only significant if they're measured. So,<br /> for example, if we used the radius measurement above, but expressed<br /> it in micrometers, it would be 62,000 micrometers. I couldn't<br /> claim that as 5 significant figures, because I really only measured<br /> two. On the other hand, if I actually measured it as 6.20 centimeters, then I could could three significant digits.</li> <li> Digits other than zero in a measurement are always significant<br /> digits.</li> <li> In multiplication and division, the number of the significant<br /> figures in the result is the <em>smallest</em> of the number<br /> of significant figures in the inputs. So, for example,<br /> if you multiple 5 by 3.14, the result will have on significant<br /> digit; if you multiply 1.41421 by 1.732, the result will have<br /> four significant digits.</li> <li> In addition and subtraction, you keep the number of<br /> significant digits in the input with the smallest number of<br /> <em>decimal places</em>.</li> </ol> <p> That last rule is tricky. The basic idea is, write the numbers<br /> with the decimal point lined up. The point where the last significant<br /> digit occurs first is the last digit that can be significant in<br /> the result. For example, let's look at 31.4159 plus 0.000254. There<br /> are 6 significant digits in 31.3159; and there are 3 significant digits in 0.000254. Let's line them up to add:</p> <pre> 31.4159 + 0.000254 ------------- 31.4162 </pre><p> The "9" in 31.4159 is the significant digit occuring in the<br /> earliest decimal place - so it's the cutoff line. Nothing<br /> smaller that 0.0001 can be significant. So we round off<br /> 0.000254 to 0.0003; the result still has 5 significant<br /> figures.</p> <p> Significant figures are a rather crude way of tracking<br /> precision. They're largely ad-hoc. There is mathematical reasoning<br /> behind these rules - so they do work pretty well most of the time. The<br /> "right" way of tracking precision is error bars: every measurement has<br /> an error range, and those error ranges propagate through your<br /> calculations, so that you have a precise error range for every<br /> calculated value. That's a much better way of measuring potential<br /> errors than significant digits. But most of the time, unless we're in<br /> a very careful, clean, laboratory environment, we don't really<br /> <em>know</em> the error bars for our measurements. Significant digits<br /> are basically a way of estimating error bars. (And in fact, the<br /> mathematical reasoning underlying these rules is based on how<br /> you handle error bars.)</p> <p> The beauty of significant figures is that they're so incredibly<br /> easy to understand and to use. Just look at <em>any</em> computation<br /> or analysis result described anywhere, and you can easily see if<br /> the people describing it are full of shit or not. For example, you<br /> can see people claiming to earn 2.034523% on some bond; they're<br /> not, unless they've invested a million dollars, and then those last<br /> digits are pennies - and it's almost certain that the calculation<br /> that produced that figure of 2.034523% was done based on<br /> inputs which had a lot less that 7 significant digits.</p> <p> The way that this affects the discussion of rounding is<br /> simple. The standard rules I stated for rounding are for<br /> rounding <em>one</em> significant digit. If you're doing a computation<br /> with three significant digits, and you get a result of<br /> 2.43532123311112, anything after the 5 is <em>noise</em>. It doesn't<br /> count. It's not really there. So you don't get to say "But<br /> it's <em>more</em> than 2.435, so you should round up to<br /> 2.44.". It's <em>not</em> more: the stuff that's making you think it's<br /> more is just computational noise. In fact, the "true" value is<br /> probably somewhere +/-0.005 of that - so it could be slightly more<br /> than 2.435, but it could <em>also</em> be slightly less. The computed<br /> digits past the last significant digit are <em>insignificant</em> -<br /> they're beyond the point at which you can say anything accurate. So<br /> 2.43532123311112 is <em>the same</em> as 2.4350000000000 if you're<br /> working with three significant digits - in both cases, you round off<br /> to 2.44 (assuming even preference). If you count the trailing digits<br /> past the one digit after the last significant one, you're just using<br /> noise in a way that's going to create a subtle upward bias in<br /> your computations.</p> <p> On the other hand, if you've got a measured value of 2.42532, with<br /> six significant figures, and you need to round it to 3 significant<br /> figures, <em>then</em> you can use the trailing digits in your<br /> rounding. Those digits are <em>real</em> and <em>significant</em>.<br /> They're a meaningful, measured quantity - and so the correct rounding<br /> will take them into account. So even if you're working with<br /> even preference rounding, that number should be rounded to three sigfigs as 2.43.</p> </div> <span><a title="View user profile." href="/goodmath" lang="" about="/goodmath" typeof="schema:Person" property="schema:name" datatype="">goodmath</a></span> <span>Wed, 03/04/2009 - 14:55</span> <div class="field field--name-field-blog-tags field--type-entity-reference field--label-inline"> <div class="field--label">Tags</div> <div class="field--items"> <div class="field--item"><a href="/tag/basics" hreflang="en">basics</a></div> <div class="field--item"><a href="/tag/numbers" hreflang="en">numbers</a></div> <div class="field--item"><a href="/tag/sigfigs-rounding-numbers-basics" hreflang="en">sigfigs rounding numbers basics</a></div> </div> </div> <section> <article data-comment-user-id="0" id="comment-2123135" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1236199463"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Thanks for this explanation. I guess my objection to your last post was that I was thinking of a situation like you described in your last paragraph here, when you were describing the rounding rules for a situation akin to that described in the penultimate paragraph here.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123135&amp;1=default&amp;2=en&amp;3=" token="H4OTUU9LXArW6u0eckxLqBfCSqTuHMRH1KREIl_cuJo"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://thesciencepundit.blogspot.com/" lang="" typeof="schema:Person" property="schema:name" datatype="">The Science Pundit (not verified)</a> on 04 Mar 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123135">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123136" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1236201547"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><blockquote><p>If you're doing a computation with three significant digits, and you get a result of 2.43532123311112, anything after the 5 is noise. It doesn't count. It's not really there. </p></blockquote> <p>Why? I mean, isn't rounding to 2.44 more likely to yield an answer close to the true value? What makes 2.43 (assuming you favor odds in the last sig fig) a better approximation of what the error bars do than 2.44?</p> <p>And for that matter, aren't error bars just an approximation for what we should "really" be using, which is probability distributions over all possible values?</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123136&amp;1=default&amp;2=en&amp;3=" token="FCWX6v-slXV1XNIA78IFstPh19KInPP2OFtWOMTk9S8"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Ed (not verified)</span> on 04 Mar 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123136">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123137" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1236203705"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Have you seen Chris Mulliss's work on this topic? He ran a bunch of monte carlo trials with different sig fig methods, and found that for mult/division and exponentials, the standard methods are less accurate than other methods. Specifically, for those operations, he recommends adding one digit onto the least significant argument of the input terms. </p> <p>Here's his results for the standard method:<br /> <a href="http://www.angelfire.com/oh/cmulliss/standard_rounding_rules_summary.htm">http://www.angelfire.com/oh/cmulliss/standard_rounding_rules_summary.htm</a></p> <p>And for his "improved" method:<br /> <a href="http://www.angelfire.com/oh/cmulliss/recommended_rounding_rules_summary.htm">http://www.angelfire.com/oh/cmulliss/recommended_rounding_rules_summary…</a></p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123137&amp;1=default&amp;2=en&amp;3=" token="iSSy2IeXcnUCi7SDOWIPebm04VdQk9bXAQ7rwd2Htyc"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Juneappal (not verified)</span> on 04 Mar 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123137">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123138" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1236205082"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Error bars and by association significant digits, have always made me quite uneasy. Maybe you can shed some light Mark. My perplexion can be summarized as follow: What well stated and correct math construct are they an approximation of? </p> <p>It seems to me that the problem is a result of the fact that we are thinking at the interface between theoretical real numbers and real world measurements along with the fact that most real numbers cannot precisely be represented in an finite amount of time and space. In a theoretical setting, when not using error bars or significant digits the standard practice with real numbers seems to be to write down a bunch of digits after the decimal and then assume it represent the same thing as if we had followed by an infinite number of zeros, an assumption which also makes me quite uneasy.</p> <p>But what happens in the real world where we must manipulate numbers that don't have infinite precision? We can set intervals and follow the rules but what do these intervals represent? Is it a limiting bound that "true" values are assumed never to cross? Is it a measure of variance, an interval that signals that a certain proportion of the samples are known to be within? If so, can we assume a central tendency to the distribution of the samples? And if so, wouldn't it make sense to keep more digits to know where the center of the tendency should be? Otherwise aren't we trowing out information? But then how many digits should we keep? </p> <p>Furthermore, the numbers used to represent the intervals, should they have a confidence interval too? Recursively?? How many digit should we write on each numbers in this example: 3.56 +-0.56+- 0.045 +-...? What mathematical principles govern all of this?</p> <p>My laymen intuition is that there is an information theoretic explanation to it all. That it might have to do with the diminishing returns on information content of extra digits in the face of rough measurements. A kind of criterion meant to save our efforts which justifies not bothering with too many digits. I am not a mathematician but this has been quite the enigma for me and I really wish someone would point me towards some insight. I really feel like I am missing a fundamental part of mathematics that is key to understanding the relation between real numbers and the real reality. Does anyone have a clue?</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123138&amp;1=default&amp;2=en&amp;3=" token="ebDGWSS_jXJ8OWK5ERJhU59Xrqucbh-LULoJJ8kNTtE"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">BenE (not verified)</span> on 04 Mar 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123138">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123139" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1236208066"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Good Post! I was taught these rules at least 6 years ago, in my basic high school science courses. Now as an engineering student I am constantly amazed at how few of my classmates know them. They'll leave things with 5 or 6 sig figs when they were only give a measurement with 2, and if you ask them why they did they'll give you a blank stare. I don't think this really gets taught to kids in public school, at least in AZ (I was in a good private school in HS), and I know no one ever bothered to explain it to us as freshmen.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123139&amp;1=default&amp;2=en&amp;3=" token="kV76Y1ba7_P5K--YJOZWbiT02NA6AjxakL7AUOoNf1E"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Uncephalized (not verified)</span> on 04 Mar 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123139">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123140" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1236208279"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><blockquote><p>The real area of the circle could easily be as high as 128, or as low as 113, assuming typical measurement errors.</p></blockquote> <p>Of course these doesn't stop some atheists from criticizing <a href="http://www.biblegateway.com/passage/?search=1Ki%207:23;&amp;version=9;">1KI 7:23</a>, which describes the circumference of a circle measuring 10 cubits as being 30 cubits.</p> <blockquote><p>They're largely ad-hoc. There is mathematical reasoning behind these rules - so they do work pretty well most of the time.</p></blockquote> <p>Again, I pretty much agree with you. However, you should take a look at sigma-delta modulators (SDMs). These devices can, for example, use a single bit resolution analog to digital converter to come up with a measurement that has many more bits of resolution, e.g., 12 bits. And the 1-bit A/D converter doesn't even have to be all that balanced to get good results. I have a basic grasp of SDMs, but still have difficultly explaining to others how taking a low-precision measurement repeatedly can generate high resolution estimates. I can convince myself from time to time, when I decide to look at it again, but I soon forget the details.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123140&amp;1=default&amp;2=en&amp;3=" token="e_oqJIS2PZkOTYWULi3NnfXSvhkvbLcjgJnXuxUYEQE"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://blog.coincidencetheories.com" lang="" typeof="schema:Person" property="schema:name" datatype="">William Wallace (not verified)</a> on 04 Mar 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123140">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123141" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1236208543"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>replace "these doesn't" with "these observations don't"<br /> replace "measuring 10 cubits" with "having a 10 cubit diameter"</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123141&amp;1=default&amp;2=en&amp;3=" token="cwvBYX0O6sLHNzkTBe0CTRIH74nlpxEMcAEs8nfvn_o"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">William Wallace (not verified)</span> on 04 Mar 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123141">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123142" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1236216403"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Typo: "will have on significant digit;" - should probably be "will have one significant digit;".</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123142&amp;1=default&amp;2=en&amp;3=" token="cWeBXCVTLXF4L40ZU-XNHtCWx4d6kmCg8tNRuL19BZo"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Alex Besogonov (not verified)</span> on 04 Mar 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123142">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123143" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1236220548"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>I agree with #3 and that's what I was always taught to do. Include the first "insignificant" digits from the imput in the calculation and then round the result to the correct number of significant ones. </p> <p>I also agree with #5. I'm sick of seeing papers in peer reviewed medical journals with ridiculous degrees of spurious precision. It's something I pick up when I referee but clearly others don't.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123143&amp;1=default&amp;2=en&amp;3=" token="bAjTKikQZpTCcyrmnKd1KNYoZNMB3XYyN563pgJRD7k"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">regordane (not verified)</span> on 04 Mar 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123143">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123144" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1236220790"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>What about the distinction between accuracy and precision? I was thaught that these are two different things. The precision is the number of digits used, regardless of whether it's justified. In Mark's example, 2.034523% would have a precision of six decimal places, but likely an accuracy much less than that (and therefore the precision used is not justified).</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123144&amp;1=default&amp;2=en&amp;3=" token="rmzQozPTs-nSNuQsM9HCtYxPGrbY23OAMk9dYxkx_l8"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Kristian Z (not verified)</span> on 04 Mar 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123144">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123145" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1236229774"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>I agree with some of the commenters before me that significant digits (or error bars, of which "significant digits" are just one example) are a very weird approximation of the concept of uncertainty.</p> <p>I would expect in most cases that the "real" value is well modeled by something like a Gaussian distribution around the measured value (with as much precision as possible, no reason to "drop digits" there). "Significant digits" or error bars suppose a uniform distribution within a given interval.</p> <p>When you do your calculations using the distributions (assuming they are symmetric) your result is a distribution centered around the value you get when calculating using the centers of your initial distributions (if I'm not mistaken).</p> <p>Dropping digits at any point of your calculation before obtaining the final result just arbitrarily shifts the centers of your distributions. Do you have any reason to believe that this would improve the model you're using?</p> <p>If you obtain 2.43532123311112 as the center of your distribution, why would you possibly shift it to 2.435 and then suddenly claim that that's as close to 2.43 as to 2.44? It clearly is not. It may be (depending on the shape of your probability distribution) that 2.43 is almost as probable as 2.44, but arbitrarily shifting your distributions around is certainly not the best way to come to that conclusion.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123145&amp;1=default&amp;2=en&amp;3=" token="X9CIYRRk3RYBWb-fNMroXqcpHfXG2Ob1jLM-Rpdq1Fs"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Jens (not verified)</span> on 05 Mar 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123145">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123146" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1236250243"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>On your point 4 about multiplying 5 by 3.14, I would disagree, as you are assuming that the 5 is a rounded value. It may however be exact.<br /> Imagine for example changing a 5 dollar bill to spome currency where you got 3.14 to the dollar. Then an answer of 15.70 would make perfect sense.<br /> I know you've tried to make the post simple, but context is very important here, and there are other times when you've over-simplified.<br /> Writing as a statistician, I'd say that if you found the mean of about 100 integer values, it would be quite reasonable to give the answer correct to 2 decimal places, which could well be a value with 2 or more significant figures than the original values. Similar results would occur in almost any statistical computation, from Standard Deviation onwards. I would agree that there are many people who give values to a completely spurious level of accuracy; I saw a case recently when something like £20000 in 1870 was said to be equivalent to 1234567.89 present day pounds.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123146&amp;1=default&amp;2=en&amp;3=" token="NcXcX0L_LzeWZ6xCn_mOHh-1JPGIlUdnsU-73NpzcUs"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">misterjohn (not verified)</span> on 05 Mar 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123146">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123147" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1236273176"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><blockquote><p>Imagine for example changing a 5 dollar bill to spome currency where you got 3.14 to the dollar. Then an answer of 15.70 would make perfect sense.</p></blockquote> <p>It would also make perfect cents.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123147&amp;1=default&amp;2=en&amp;3=" token="TmZQxxLw2Afy3M5qxhyflEUQvFxzmAB4wBiEDHriydA"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">pjb (not verified)</span> on 05 Mar 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123147">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123148" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1236338314"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p><i>On your point 4 about multiplying 5 by 3.14, I would disagree, as you are assuming that the 5 is a rounded value. It may however be exact. Imagine for example changing a 5 dollar bill to spome currency where you got 3.14 to the dollar. </i></p> <p>If the 5 is exact, then you aren't multiplying 5 by 3.14. You are multiplying 5.0000000...(with infinite significant zeroes) by 3.14.</p> <p>If the exchange rate is exactly 3.14 (e.g. if the mystery currency divides into even hundredths and this a real cash transaction, not an electronic exchange where you can have portions of the smallest unit of currency), then you are really multiplying 5.0000000... by 3.1400000000..(again with infinite sig figs). The result in this case has infinite sig figs, but would probably be listed as 15.70 because we don't need to know about fractions of the smallest unit of currency when counting out cash.</p> <p>But the original statement is correct. When scientists are using sig figs, saying you multiply 5 by 3.14 means the 5 is measured to 1 sig fig.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123148&amp;1=default&amp;2=en&amp;3=" token="NUdKrD0rlsYzYktAessS9tTIOc_skOJcUH4K065tREk"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Todd P (not verified)</span> on 06 Mar 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123148">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123149" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1236433329"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Those of us who grew up using slide rules to do calculations understood these principles fairly well. Another skill we learned was to estimate the magnitude of our calculation first, so that we didn't put the decimal in the wrong place. It's amazing how first calculators then computer spreadsheets led to such ridiculous claims of "accuracy". I can't remember how many times I had to review this with the talented young engineers from good schools that I managed, but there's obviously something missing in the way we teach simple mathematical concepts these days.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123149&amp;1=default&amp;2=en&amp;3=" token="POqlWgZgVCA-QI9HZ-KSg-Pif1mqs4olxc1V6Elk1vM"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">MJM (not verified)</span> on 07 Mar 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123149">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> </section> <ul class="links inline list-inline"><li class="comment-forbidden"><a href="/user/login?destination=/goodmath/2009/03/04/basics-significant-figures%23comment-form">Log in</a> to post comments</li></ul> Wed, 04 Mar 2009 19:55:07 +0000 goodmath 92694 at https://scienceblogs.com Rounding and Bias https://scienceblogs.com/goodmath/2009/03/01/rounding-and-bias <span>Rounding and Bias</span> <div class="field field--name-body field--type-text-with-summary field--label-hidden field--item"><p> Another alert reader sent me a link to a YouTube video which is moderately interesting.<br /> The video itself is really a deliberate joke, but it does demonstrate a worthwile point. It's about rounding.</p> <object width="480" height="295"><param name="movie" value="http://www.youtube.com/v/MbLRxl3Rj7k&amp;hl=en&amp;fs=1" /><param name="allowFullScreen" value="true" /><param name="allowscriptaccess" value="always" /><embed src="http://www.youtube.com/v/MbLRxl3Rj7k&amp;hl=en&amp;fs=1" type="application/x-shockwave-flash" allowscriptaccess="always" allowfullscreen="true" width="480" height="295"></embed></object><!--more--><p> The overwhelming majority of us were taught how to round decimals back in either elementary or middle school. (I don't even recall exactly when.) The rule that most of us were taught is: </p><ol> <li> If the first digit after the rounding point is 0, 1, 2, 3, or 4, then round the previous digit down;</li> <li> If the first digit after the rounding point is 5, 6, 7, 8, or 9, then round the<br /> previous digit up.</li> </ol> <p> Here's the problem: those rules are <em>wrong</em>.</p> <p> The problem is that if the first digit after the rounding point is zero, you're<br /> <em>not</em> really rounding - that is, you're not doing anything that <em>changes</em> the value of the data point. But if the first digit after the rounding point is 5,<br /> then it's exactly halfway in-between; it's <em>not</em> closer to the either the rounded up value or the rounded down value - it's exactly between them. Always rounding 5 up will create a bias, because it's taking the point at the middle, and shifting it as if it were closer<br /> towards the upward side.</p> <p> To demonstrate, let's try an easy example. Suppose we've got the following set<br /> of numbers: {0, 0.5. 1, 1.5. 2, 2.5, 3, 3.5, 4, 4.5}. Let's compute the mean<br /> of those numbers: 22.5/10 = 2.25.</p> <p> Now, let's round them off: {0, 1, 1, 2, 2, 3, 3, 4, 4, 5}; and then compute the mean: 25/10 = 2.5.</p> <p> With the standard rounding rule, we've biased the numbers upwards enough to create a significant error!</p> <p> The correct way to round is to randomly round 5s either up or down. The standard rule, used in most scientific settings, is to pick either odd or even as the "preferred" outcome, and to always round 5s towards the preferred outcome. If we try that with our example, using<br /> preferred even, the rounding is {0, 0, 1, 2, 2, 2, 3, 4, 4, 4}. Taking the mean of that, we get 22/10 = 2.2 - which is significantly closer to the mean of the original numbers than the<br /> mean rounding 5s up. The practice of rounding up adds a systematic bias to the data. It's a very small systematic bias, but it's a real one.</p> <p> Does it matter? Not usually. As the commentary to the video points out, over the space of a couple of years, that systematic error in rounding gas prices amounts to about a dime. For most things in our daily experience, the difference between random rounding and upward rounding for 5s is just not significant. But if you're doing statistical analysis of<br /> large quantities of data, or you're doing computations that rely on a high degree of<br /> precision, then it can introduce enough error to foul your results. If you're doing statistical analysis, it can do things like make an insignificant result appear to be statistically significant. If you're doing high precision computations for things like<br /> navigation of a space probe through a gravitational slingshot, it can introduce enough error<br /> to crash your probe.</p> </div> <span><a title="View user profile." href="/goodmath" lang="" about="/goodmath" typeof="schema:Person" property="schema:name" datatype="">goodmath</a></span> <span>Sun, 03/01/2009 - 15:32</span> <div class="field field--name-field-blog-tags field--type-entity-reference field--label-inline"> <div class="field--label">Tags</div> <div class="field--items"> <div class="field--item"><a href="/tag/basics" hreflang="en">basics</a></div> <div class="field--item"><a href="/tag/numbers" hreflang="en">numbers</a></div> </div> </div> <section> <article data-comment-user-id="0" id="comment-2123117" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1235943969"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Mark,</p> <p>Your explanation only works if you're removing exactly one significant digit when rounding (ie. written as real numbers, the <i>0</i> or <i>5</i> that gets chopped off is followed by an infinite string of <i>0</i>'s). If you assume that you are very likely to encounter a non-zero digit somewhere beyond the digit that you're rounding off, then lopping off a <i>0</i> is indeed (almost) always rounding down, and also the "rounded up" value is (almost) always closer to the "true" value than if you just lopped off the <i>5</i> and rounded down.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123117&amp;1=default&amp;2=en&amp;3=" token="VlJUNb0vzqL0NeUqgMCN_3uHjlqeYeDEYL_2VjcZ5Rc"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://thesciencepundit.blogspot.com/" lang="" typeof="schema:Person" property="schema:name" datatype="">The Science Pundit (not verified)</a> on 01 Mar 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123117">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123118" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1235945009"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>What #1 said.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123118&amp;1=default&amp;2=en&amp;3=" token="1yvsAjtDzCvBQyWqu0GU_Ok68LH5KCygPXAAr9JAgV8"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">William Wallace (not verified)</span> on 01 Mar 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123118">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123119" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1235946018"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>#1 - nonsense. By what process in the world do we produce truncated numbers like you suggest? You have this odd idea that if I take some measurement, and get 2.5 as a value, then the true value is of the form 2.5xxxxx where I just don't know what the x's happen to be (i.e. the measured value is just a truncated version of the true value). But it's not. If our instruments are good, we think the value is near 2.5. Maybe a little above or a little below. There just ain't many ways to produce data where we know all the digits are true in the truncation sense.</p> <p>-kevin</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123119&amp;1=default&amp;2=en&amp;3=" token="7yV2AEptopIGxR2KbAPFZiVrtqBeHgRH2xfBR8eBhpg"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">kevwalsh (not verified)</span> on 01 Mar 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123119">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123120" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1235949978"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Re #3. </p> <p>o $1.09 rounded to the nearest dollar.<br /> o 24-bit sample rounded to 16-bits</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123120&amp;1=default&amp;2=en&amp;3=" token="UY0ZtNBhdHRK4Sc9_9lACn7bZfEwcFlAuf-KP5LGiJY"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">William Wallace (not verified)</span> on 01 Mar 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123120">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123121" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1235950049"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Comments #1-3 indicate it is time for a post on significant figures. Here is the quick version:</p> <p>2.5 actually means a between 2.45 and 2.55 if this is not what you want it to mean you could perhaps write 2.50 or 2.5 +/- 0.2. if you want exctly two and a half it is properly written 25 *10^1 not the lack of any decimal point makes a number exact.</p> <p>WRT Gas: The pump at my station measures price to 4 sig figs and volume to 5. I think the means that it only rounds wrong one time in 200.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123121&amp;1=default&amp;2=en&amp;3=" token="pxXZZsGNRCjaRFrd5KFZWU75iK1W0DmaJ6juXYPIYiU"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">AntaresTrader (not verified)</span> on 01 Mar 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123121">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123122" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1235951112"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>"If you're doing high precision computations for things like navigation of a space probe through a gravitational slingshot, it can introduce enough error to crash your probe."<br /> In that case maybe you shouldn't be rounding.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123122&amp;1=default&amp;2=en&amp;3=" token="vKEK1NPbQ_V9_bStRKCFfxiXPZUM76UD-tS4CjjMQjQ"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Karl (not verified)</span> on 01 Mar 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123122">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123123" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1235952674"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>#6, It's the basic problem of computation. You can't store infinite length numbers on a computer, except for symbolically. The second you can't store, and calculate, everything symbolically, you have to account for the need to truncate or round. And it's not even numbers you would think need special handling. 0.1 is a classic example of a number that cannot be stored exactly using IEEE754 floating point, because .1 is a non-repeating fractional number in base 2. This is why you need to use proper numeric methods to guarantee N digits of accuracy, and this post about rounding is an example of how to reduce the error of the least significant number.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123123&amp;1=default&amp;2=en&amp;3=" token="F2c1qMsF3NSkja_tulLCz1vLz3W1xNzebK80TDenDDA"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">wng_z3r0 (not verified)</span> on 01 Mar 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123123">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123124" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1235982047"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Often you have more than one non-significant digit, ie, digits you want to round away. In those cases #1 is correct. It's not that you have 2.5xxxx where you don't know x, it's that you have 2.534 and you don't care about anything after the decimal point. </p> <p>Also, I would say that taking 1.0000(etc) to 1 actually IS rounding, it's just rounding with a no-op, in the same way that dividing something by one is still dividing... But that's a definitions thing...</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123124&amp;1=default&amp;2=en&amp;3=" token="_6o92SQld_cji2YyAHNc-CVyrgYnzRdg8LUmNovEaHA"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Brian (not verified)</span> on 02 Mar 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123124">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123125" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1235983285"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Re #4:</p> <p>$1.09 rounded to the nearest dollar? $1<br /> 24-bit sample rounded to 16-bits? my argument applies.</p> <p>How about this: $1.05 rounded to the nearest dollar. Mark is right. There is no single "nearest" dollar. They are both equally near. #1 tried to imply that $1.05 really stands for a true value of $1.05+delta, with delta&gt;=0, and therefore the "nearest" dollar should more likely be $2. This is nonsense. It is almost always going to be $1.05+/-delta for any kind of real sampling or measurements.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123125&amp;1=default&amp;2=en&amp;3=" token="RnUHlwnQUw5Ywcn9sFVlJexAL4CMl8wLIqwuHO4U2_M"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">kevwalsh (not verified)</span> on 02 Mar 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123125">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123126" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1235983682"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Just to be pedantic, I assume that when you say 1.05 to the nearest dollar you mean 1.50. But the point is that 1.50, ok, is equal, but 1.5x where x&gt;0 is NOT equal, no matter</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123126&amp;1=default&amp;2=en&amp;3=" token="xQHSzHMvPefg5cAxV2krlijrTfsoOqZkq01c40eIUSo"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Brian (not verified)</span> on 02 Mar 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123126">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123127" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1235984854"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Yeah I assume that's what #9 meant.</p> <p>#8 - I think any rounding algorithm would have to loose accuracy in general.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123127&amp;1=default&amp;2=en&amp;3=" token="K00UEowvQJQ8UlyTKrIvx0kp40wudQGx_71IS4Ze6Ds"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Paul Carpenter (not verified)</span> on 02 Mar 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123127">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123128" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1235986936"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Mark is right about rounding (for the record, so am I, although it turns out I might be wrong re. gas pump rounding, but no one really knows, because depending on who you ask the machines are either much less or much more accurate than I gave them credit for in the video).</p> <p>It is kind of my lifelong dream to be deemed moderately interesting by people who like math (I went so far as to write a novel about such people), so I appreciate the link and the thoughtful commentary. -John</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123128&amp;1=default&amp;2=en&amp;3=" token="R-Ns0IaQsyOlxoucoTCWlHZmJ3abw746tv9AG_AIdKA"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://www.sparksflyup.com" lang="" typeof="schema:Person" property="schema:name" datatype="">John Green (not verified)</a> on 02 Mar 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123128">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123129" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1235988806"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>#12: I still maintain that you and Mark are ONLY correct about (in the case of rounding to the next integer) xxxx.5 EXACTLY. if you prefer evens, and you round 4.51 down to 4, you are doing it wrong.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123129&amp;1=default&amp;2=en&amp;3=" token="C3MXUlMKV-Us10L2vEu8MHWnOl3nN-Mp3QwBCgSBd7g"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Brian (not verified)</span> on 02 Mar 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123129">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123130" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1236001097"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>I agree a post on significant digits is needed. If you measure 3.52, what you know is that what you are measuring is 3.5xxx..., where 0.0xxx... is close to 0.02. (how close depends on your tool, and should be specified.)</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123130&amp;1=default&amp;2=en&amp;3=" token="fUYcO1uv6PPyevMRe69VC4H9HqMJTxGORfGYCxtkyK4"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Tree (not verified)</span> on 02 Mar 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123130">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123131" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1236005932"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Well, sure, but 3.51 isn't 3.5. Obviously this is only relevant if the calculation being done ends either by 0'ing out or if the calculator in question rounds wrongly.</p> <p>(Example: I was taught in third grade that 3.3345 rounded to the nearest penny would be 3.34, because you have to round up the 4 and then you round up the 3, which is totally ludicrous. But I have heard--although no confirmation from the nice people at exxon--that gas pumps regularly round this way.)</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123131&amp;1=default&amp;2=en&amp;3=" token="2xQMCDFT8QE5Z-xFa7rrmltk9xO-jAdF-k3xJvBjPrY"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">John Green (not verified)</span> on 02 Mar 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123131">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123132" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1236007995"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>re: 15, wait, so you're saying that 3.3344444444445 gets rounded to 3.34??? that's dumb. If you were taught that in 3rd grade your 3rd grade teacher should be fired. from a cannon. </p> <p>Rounding isn't a recursive process. You pick a point, and round.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123132&amp;1=default&amp;2=en&amp;3=" token="vQgmsIBM4BkhRibW4CukeIpEHr34BUdaXn3ypvb09C4"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Brian (not verified)</span> on 02 Mar 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123132">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123133" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1236029485"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><blockquote><p>If you're doing high precision computations for things like navigation of a space probe through a gravitational slingshot, it can introduce enough error to crash your probe.</p></blockquote> <p>Especially if readings are processed in recursive equations, where little errors can accumulate over time.</p> <p>Rounding is a form of quantization. And quantization can be done in various ways (truncation, rounding, rounding toward 0, rounding toward infinity, etc.). And quantization error (quantized value - actual value) can be handled by adding noise (dither). And dither can have a Gaussian PDF, or other PDFs, e.g., triangular, depending upon the application.</p> <p>Anyway, MarkCC is mostly correct, and even in the case when he is less than correct, I get his point.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123133&amp;1=default&amp;2=en&amp;3=" token="e5Z6gskeLeNOyTKHBwoXZOu6KaUkZI7HHzPlLHQQbzg"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">William Wallace (not verified)</span> on 02 Mar 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123133">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2123134" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1236087047"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Thanks for all the great information, MarkCC. I always enjoy reading your blog.</p> <p>I would also like to join those asking for a post about the concepts and methods regarding significant digits.</p> <p>I have tried to read material about it from NIST and others in the past, but my understanding is still very low, and I would appreciate your treatment of this subject, if it's something that would interest you.</p> <p>Thanks.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2123134&amp;1=default&amp;2=en&amp;3=" token="QK3SWtEOYBj2zki8kDYeVAsbXwie20k2YHN49rMbnD8"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">RoaldFalcon (not verified)</span> on 03 Mar 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2123134">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> </section> <ul class="links inline list-inline"><li class="comment-forbidden"><a href="/user/login?destination=/goodmath/2009/03/01/rounding-and-bias%23comment-form">Log in</a> to post comments</li></ul> Sun, 01 Mar 2009 20:32:28 +0000 goodmath 92693 at https://scienceblogs.com My Favorite Strange Number: Ω (classic repost) https://scienceblogs.com/goodmath/2008/12/31/my-favorite-strange-number-cla <span>My Favorite Strange Number: Ω (classic repost)</span> <div class="field field--name-body field--type-text-with-summary field--label-hidden field--item"><p><em>I'm away on vacation this week, taking my kids to Disney World. Since I'm not likely to<br /> have time to write while I'm away, I'm taking the opportunity to re-run an old classic series<br /> of posts on numbers, which were first posted in the summer of 2006. These posts are mildly<br /> revised.</em></p> <p> Ω is my own personal favorite transcendental number. Ω isn't really a specific number, but rather a family of related numbers with bizarre properties. It's the one real transcendental number that I know of that comes from the theory of computation, that is important, and that expresses meaningful fundamental mathematical properties. It's also deeply non-computable; meaning that not only is it non-computable, but even computing meta-information about it is non-computable. And yet, it's <em>almost</em> computable. It's just all around awfully cool. </p> <!--more--><p>So. What is it Ω?</p> <p> It's sometimes called the <em>halting probability</em>. The idea of it is that it encodes the <em>probability</em> that a given infinitely long random bit string contains a prefix that represents a halting program.</p> <p> It's a strange notion, and I'm going to take a few paragraphs to try to elaborate on what that means, before I go into detail about how the number is generated, and what sorts of bizarre properties it has.</p> <p> Remember that in the theory of computation, one of the most fundamental results is the non-computability of <em>the halting problem</em>. The halting problem is the question "Given a program P and input I, if I run P on I, will it ever stop?" You cannot write a program that reads an arbitrary P and I and gives you the answer to the halting problem. It's impossible. And what's more, the statement that the halting problem is not computable is actually <em>equivalent</em> to the fundamental statement of Gödel's incompleteness theorem.</p> <p>Ω is something related to the halting problem, but stranger. The fundamental question of Ω is: if you hand me a string of 0s and 1s, and I'm allowed to look at it one bit at a time, what's the probability that <em>eventually</em> the part that I've seen will be a program that eventually stops?</p> <p> When you look at this definition, your reaction <em>should</em> be "Huh? Who cares?"</p> <p> The catch is that this number - this probability - is a number which is easy to define; it's not computable; it's completely <em>uncompressible</em>; it's <em>normal</em>.</p> <p>Let's take a moment and look at those properties:</p> <ol> <li> Non-computable: no program can compute Ω. In fact, beyond a certain value N (which is non-computable!), you cannot compute the value of <em>any bit</em> of Ω. </li> <li> Uncompressible: there is no way to represent Ω in a non-infinite way; in fact, there is no way to represent <em>any substring</em> of Ω in less bits than there are in that substring.</li> <li> Normal: the digits of Ω are completely random and unpatterned; the value of and digit in Ω is equally likely to be a zero or a one; any selected <em>pair</em> of digits is equally likely to be any of the 4 possibilities 00, 01, 10, 100; and so on.</li> </ol> <p> So, now we know a little bit about why Ω is so strange, but we still haven't really defined it precisely. What is Ω? How does it get these bizarre properties?</p> <p> Well, as I said at the beginning, Ω isn't a single number; it's a family of numbers. The value of <em>an</em> Ω is based on two things: an effective (that is, turing equivalent) computing device; and a prefix-free encoding of programs for that computing device as strings of bits.</p> <p> (The prefix-free bit is important, and it's also probably not familiar to most people, so let's take a moment to define it. A prefix-free encoding is an encoding where for any given string which is valid in the encoding, <em>no prefix</em> of that string is a valid string in the encoding. If you're familiar with data compression, Huffman codes are a common example of a prefix-free encoding.)</p> <p> So let's assume we have a computing device, which we'll call φ. We'll write the result of running φ on a program encoding as the binary number p as &amp;phi(p). And let's assume that we've set up φ so that it only accepts programs in a prefix-free encoding, which we'll call ε; and the set of programs coded in ε, we'll call Ε; and we'll write φ(p)↓ to mean φ(p) halts. Then we can define Ω as:</p> <p></p><center><br /> Ω<sub>φ,ε</sub> = <b>Σ</b><sub>p ∈ Ε|p↓</sub> 2<sup>-len(p)</sup><br /> </center> <p> So: for each program in our prefix-free encoding, if it halts, we <em>add</em> 2<sup>-length(p)</sup> to Ω. </p> <p> Ω is an incredibly odd number. As I said before, it's random, uncompressible, and has a fully normal distribution of digits. But where it gets fascinatingly strange is when you start considering its computability properties.</p> <p> Ω is <em>definable</em>. We can (and have) provided a specific, precise definition of it. We've even described a <em>procedure</em> by which you can conceptually generate it. But despite that, it's <em>deeply</em> uncomputable. There are procedures where we can compute a finite prefix of it. But there's a limit: there's a point beyond which we cannot compute <em>any</em> digits of it. <em>And</em> there is no way to compute that point. So, for example, there's a very interesting paper where the authors<br /> <a href="http://www.expmath.org/expmath/volumes/11/11.3/Calude361_370.pdf">computed the value of Ω for a Minsky machine</a>; they were able to compute 84 bits of it; but the last 20 are <em>unreliable</em>, because it's uncertain whether or not they're actually beyond the limit, and so they may be wrong. But we can't tell!</p> <p> What does Ω mean? It's actually something quite meaningful. It's a number that encodes some of the very deepest information about <em>what</em> it's possible to compute. It gives a way to measure the probability of computability. In a very real sense, it represents the overall nature and structure of computability in terms of a discrete probability.</p> <p> Ω is actually even the basis of a halting oracle - that is, if you knew the<br /> value of Ω, then you could easily write a program which solves the halting problem!</p> <p> Ω is also an amazingly dense container of information - as an infinitely long number and so thoroughly non-compressible, it contains an unmeasurable quantity of information. And we can't even figure out what most of it is!</p> </div> <span><a title="View user profile." href="/goodmath" lang="" about="/goodmath" typeof="schema:Person" property="schema:name" datatype="">goodmath</a></span> <span>Wed, 12/31/2008 - 02:53</span> <div class="field field--name-field-blog-tags field--type-entity-reference field--label-inline"> <div class="field--label">Tags</div> <div class="field--items"> <div class="field--item"><a href="/tag/classics" hreflang="en">classics</a></div> <div class="field--item"><a href="/tag/computation" hreflang="en">computation</a></div> <div class="field--item"><a href="/tag/numbers" hreflang="en">numbers</a></div> </div> </div> <div class="field field--name-field-blog-categories field--type-entity-reference field--label-inline"> <div class="field--label">Categories</div> <div class="field--items"> <div class="field--item"><a href="/channel/free-thought" hreflang="en">Free Thought</a></div> </div> </div> <section> <article data-comment-user-id="0" id="comment-2122517" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1230717371"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Bro, you should link back to the original article so that the comments can be read.</p> <p>Happy new year!</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2122517&amp;1=default&amp;2=en&amp;3=" token="EbrgYTJ_wwC7meOoGX8S7pODDdMNQAZsTL7hrMfpuSE"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://www.ep-hi.net/blog/" lang="" typeof="schema:Person" property="schema:name" datatype="">Ben (not verified)</a> on 31 Dec 2008 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2122517">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2122518" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1230727122"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>By the way, halting probability is sometimes called "Chaitin's_constant".</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2122518&amp;1=default&amp;2=en&amp;3=" token="CXfbwlnAnzKmm1zaEqYRPEE3VfYjCt-p7mlFrp_Qrxg"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Alex Besogonov (not verified)</span> on 31 Dec 2008 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2122518">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2122519" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1230730167"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Yes, Alex, you remind me of a pretty nice piece of Chaitin's here which includes a bit about Omega, the halting problem, Godel's incompleteness, noncomputability and the whole bit</p> <p><a href="http://www.cs.auckland.ac.nz/~chaitin/unm.html">http://www.cs.auckland.ac.nz/~chaitin/unm.html</a></p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2122519&amp;1=default&amp;2=en&amp;3=" token="iIYVDP23uCb_He4ShiXLxqsVYBSQgNoD5YJp5TAjuuw"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">rick (not verified)</span> on 31 Dec 2008 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2122519">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2122520" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1230735726"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>In marine science Ω has a different and prosaic meaning, its the saturation state of calcium carbonate.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2122520&amp;1=default&amp;2=en&amp;3=" token="LkqEstRMx6Y1dMLNA7QAqFXzURdSolwccWxeBaI0R3o"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Dave S. (not verified)</span> on 31 Dec 2008 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2122520">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2122521" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1230750025"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>I read a book by Chaitin -- _Meta Math!_. Most of it has now left me, but one thing sticks in my mind: Apparently, if you choose a real number at random, then with probability 1, it will be:<br /> 1. Transcendental.<br /> 2. Random.<br /> 3. Uncomputable.</p> <p>In other words, we can't write it down, and neither can we describe it precisely. Even if I knew exactly what this number is, there is no way I could impart that information to you. So, in what sense do real numbers really exist anyway?</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2122521&amp;1=default&amp;2=en&amp;3=" token="QfycX-9YO67j1FqsDxtX1bRpCY6kAY9AQYKUTun4C9Q"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">John Fouhy (not verified)</span> on 31 Dec 2008 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2122521">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2122522" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1230759068"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>I truly and deeply cannot understand this post, and no amount of italics will help that. </p> <p>And that is OK.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2122522&amp;1=default&amp;2=en&amp;3=" token="Gs2i9nswFfZhYZ9MngqTtTtVeAnfDiWxHTAhdCJhM24"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">- (not verified)</span> on 31 Dec 2008 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2122522">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2122523" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1230767349"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>I've also read that book by Chaitin, I really enjoyed it. It really makes you philosophically suspicious about the set of real numbers. Also it's mostly non-technical from what I remember.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2122523&amp;1=default&amp;2=en&amp;3=" token="ZTI3z_Sg3kOOZh0HTW7dx3uDiZhjy1vaCegwbtMglkk"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Jair (not verified)</span> on 31 Dec 2008 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2122523">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2122524" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1230771817"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>As an undergraduate math major, my question is this.</p> <p>If I define an $\Omega$, can I determine the computing machine that it is for?</p> <p>I'm just curious, because wouldn't that make this ironically close to 'the question' and 'the answer' in HHGTTG? You can only know an $\Omega$ or a machine, not both?</p> <p>(I realize it would be amazingly hard to define an \Omega, given Uncompressible and Normal)</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2122524&amp;1=default&amp;2=en&amp;3=" token="UHaEU6zdBAnLfRTeVUksmAoduWnGueBfWIUbfwv28Bs"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://younglinguist.livejournal.com" lang="" typeof="schema:Person" property="schema:name" datatype="">The Young Linguist (not verified)</a> on 31 Dec 2008 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2122524">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2122525" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1230780823"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>John Fouhy:</p> <p>"in what sense do real numbers really exist anyway?"</p> <p>You are on the edge of entering a vast and deep forest of metaphysical disagreement.</p> <p>You are making assumptions about what "with probability 1" means, which are intuitive to you, but not what you think.</p> <p>You are making assumptions about what it means for mathematical objects to exist, which wise people have debated for centuries.</p> <p>Here be dragons.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2122525&amp;1=default&amp;2=en&amp;3=" token="3BW_5G-2uzCBa_FNstw8JP7op3msPmJbjaua_-YkUYI"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://magicdragon.com" lang="" typeof="schema:Person" property="schema:name" datatype="">Jonathan Vos Post (not verified)</a> on 31 Dec 2008 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2122525">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="138" id="comment-2122526" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1230814483"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Re John #5:</p> <p>Chaitin makes a very strong case that the whole idea of the real numbers is philosophically ill-founded. </p> <p>It's a damned tricky question. On the one hand, we've got<br /> real observable things that at least approximate irrational, transcendental numbers - things like π and e. In that sense, they've got to exist. A perfect circle doesn't exist in the real world - but it seems strange to say that circles don't exist. And yet, if circles exist, then π must exist; and if we accept the reality of π, then we're stuck with the whole mess of irrationals.</p> <p>But on the other hand, the moment we accept the idea of the irrational numbers, suddenly the whole concept of numbers starts to become downright nonsensical - as you point out, the overwhelming majority of numbers can't even be <em>described</em>. </p> <p>(And contrary to JvP, I don't think that you're misunderstanding what "with probability 1" means; I think the fact that you're questioning whether the reals really exist in a meaningful sense shows that you get it; the<br /> undescribable numbers so outweigh the describables that<br /> the describables are a vanishingly small fraction of the set of reals.)</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2122526&amp;1=default&amp;2=en&amp;3=" token="UHklmXbkvZBESnA8O9hzFyy1H3aKlfNg_fgHcHge-bA"></drupal-render-placeholder> </div> <footer> <em>By <a title="View user profile." href="/goodmath" lang="" about="/goodmath" typeof="schema:Person" property="schema:name" datatype="">goodmath</a> on 01 Jan 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2122526">#permalink</a></em> <article typeof="schema:Person" about="/goodmath"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/goodmath" hreflang="en"><img src="/files/styles/thumbnail/public/pictures/markcc.jpg?itok=PmLQEFZp" width="92" height="100" alt="Profile picture for user goodmath" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2122527" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1230846516"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>"the describables are a vanishingly small fraction of the set of reals"</p> <p>Yes, but they are a particularly *meaningful* fraction, and the amount of information in each is well modeled by the Minimum Description Length paradigm. MDL is more easily calculated than the Kolmogorov approach.</p> <p>Someone who works with computers for a living may, in a sense, be a Constructivist (in my classification of the Ontology of Mathematical objects), and ONLY care about describable numbers. Because those lead to the describable numbers on one's paychecks.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2122527&amp;1=default&amp;2=en&amp;3=" token="0gx_3lS0rCr6Wb_pDfSv9tmDyMtHoa6lDEXYEo4qfBY"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://magicdragon.com" lang="" typeof="schema:Person" property="schema:name" datatype="">Jonathan Vos Post (not verified)</a> on 01 Jan 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2122527">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2122528" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1230870946"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Are irrational numbers really that problematic? After all, even if you can't describe them, you can work with them. No matter how hard they are to describe, e^iÏ=-1, and sqrt(2)^2=2.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2122528&amp;1=default&amp;2=en&amp;3=" token="EJ5fq5KajjlcaXYuYBfXfxhS8O3LghSHhTl2uIBlgMk"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Valhar2000 (not verified)</span> on 01 Jan 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2122528">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2122529" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1230893579"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Valhar2000: The problem is with real numbers whose description intrinsically is infinitely long. For instance, a real number whose decimal expansion or continued fraction expansion has an infinite (countable) number of digits, and no way to predict what the (n+1)-th digit is from knowing the first n digits, and no way to "compress" the number to any shorter or more efficient representation.</p> <p>That's the essence of the problem: that "almost all" real numbers fall into that class.</p> <p>I don't consider that these problems mean that such numbers do not "exist" -- but that they can't be finitely constructed makes some people question their ontological and epistemological status -- i.e. do they exist, and what can we know about them?</p> <p>This goes beyond the algebraic / irrational / transcendetal distinction to the difficulties that Chaitin discusses.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2122529&amp;1=default&amp;2=en&amp;3=" token="ff4I_RXRuGFd2yCtYWnT9DuNbPh9ONVr6RboISNZ7vw"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://magicdragon.com" lang="" typeof="schema:Person" property="schema:name" datatype="">Jonathan Vos Post (not verified)</a> on 02 Jan 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2122529">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="138" id="comment-2122530" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1230893978"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Re JvP #12:</p> <p>It's true that the computable reals are particularly important in a philosophical sense. But still - they are so dwarfed by the undescribables that the probability of a randomly selected real number being undescribable is 1.</p> <p>That probability statement says nothing about the philosophical or practical importance of the describable or computable numbers.</p> <p>One thing I might post about at some point is the computable numbers. I saw a presentation a few years ago (I *think* it was one of Chaitin's, but I'm not sure) that presented a construction of the set of computable numbers. It was an interesting idea - it defined computable numbers as numbers where you could write a program that would emit the digits of that number in sequence. So, for example, π is computable - because we can write a program that emits the digits of π. But undescribable numbers aren't - because there's no finite program to emit their digits. It was a very neat idea - and the argument that surrounded the definition of the computables was that we should, perhaps, think of math in terms of the computable numbers, rather than the reals, because the reals are philosophically ill-founded because of the undescribables.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2122530&amp;1=default&amp;2=en&amp;3=" token="iDNqzTxnqqiztakVTFOY948Eyk7OuHYV5VWt0Gu6Hls"></drupal-render-placeholder> </div> <footer> <em>By <a title="View user profile." href="/goodmath" lang="" about="/goodmath" typeof="schema:Person" property="schema:name" datatype="">goodmath</a> on 02 Jan 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2122530">#permalink</a></em> <article typeof="schema:Person" about="/goodmath"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/goodmath" hreflang="en"><img src="/files/styles/thumbnail/public/pictures/markcc.jpg?itok=PmLQEFZp" width="92" height="100" alt="Profile picture for user goodmath" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2122531" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1230895180"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Computable numbers were defined independently by Turing, Post and Church. See The Undecidable, ed. Martin Davis, for further original papers.</p> <p>Wikipedia reminds us of the following.</p> <p>Informally, Minsky defines the numbers to be computed in a manner similar to those defined by Alan Turing in 1936, i.e. as "sequences of digits interpreted as decimal fractions" between 0 and 1:</p> <p> "A computable number [is] one for which there is a Turing machine which, given n on its initial tape, terminates with the nth digit of that number [encoded on its tape]." (Minsky 1967:159)</p> <p>The key notions in the definition are (1) that some n is specified at the start, (2) when the machine's internal counter reaches this n the computation terminates after printing the nth decimal digit on its tape -- otherwise it would continue computing forever.</p> <p>An alternate form of (2) -- the machine successively prints all n of the digits on its tape, halting after printing the nth -- emphasizes Minsky's observation: (3) That by use of a Turing machine, a finite definition -- in the form of the machine's TABLE -- is being used to define what is a potentially-infinite string of decimal digits.</p> <p>Marvin Minsky 1967, Computation: Finite and Infinite Machines, Prentice-Hall, Inc. Englewood Cliffs, NJ. No ISBN. Library of Congress Card Catalog No. 67-12342. See especially chapter §9 "The Computable Real Numbers"</p> <p>There are presentations floating around of key results from:</p> <p>Oliver Aberth 1968, Analysis in the Computable Number Field, Journal of the Association for Computing Machinery (JACM), vol 15, iss 2, pp 276-299. This paper describes the development of the calculus over the computable number field.</p> <p>Klaus Weihrauch 2000, Computable analysis, Texts in theoretical computer science, Springer, ISBN 3540668179. (online version) §1.3.2 introduces the definition by nested sequences of intervals converging to the singleton real. Other representations are discussed in §4.1.</p> <p>Related to my classification of mathematical ontologies, one naturally asks: "is possible to disregard or throw away the full set of reals and use computable numbers for all of mathematics?" This part of the ideocosm is appealing to Constructivists, especially by what Bishop and Richman call the Russian school of constructive mathematics. Caveat: Even though the calculus can be developed over the computable numbers, the set of computable numbers is not closed under basic operations such as taking the supremum of a bounded sequence, so this set can NOT be used as a replacement for the full set of real numbers in classical mathematics.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2122531&amp;1=default&amp;2=en&amp;3=" token="Ve0VZHUZWsn40kqaH-O8KuQcoh0Hc0cwUg_hmOe1bSA"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://magicdragon.com" lang="" typeof="schema:Person" property="schema:name" datatype="">Jonathan Vos Post (not verified)</a> on 02 Jan 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2122531">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2122532" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1230921148"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>"in what sense do real numbers really exist anyway?"</p> <p>Or, are real numbers "real"? Some arguments here begin to sound like the question of Berkeley: "If a tree falls in the forest..." Valhar2000 reminds us that "e^iÏ=-1, and sqrt(2)^2=2" are "real" in the sense that they have a meaning beyond irrationality. But before the observations about the sqrt(2) and pi as "real" numbers, they surely did exist (in a "real" sense), no? Until a specific number enters our collective conscious, what does it symbolize? </p> <p>What is the nature of "Schrodinger's Cat"? Is the cat a manifestation of a calculation that comes to an end? An observation of a cat (dead or alive) only makes sense when there is a sentient being to do the observing. Are we here collectively observing the Omega's out there by considering their existence? We (collectively) "use" pi, for example, whether or not we can ever write it down.</p> <p>When a program does "halt", the probability of halting is immediately known: it is 1. I suspect that anyone who bothers to comment here tacitly acknowledges the importance of Omega. </p> <p>We all presume that our lives and our consciousness will someday come to a halt. Are we not programs?</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2122532&amp;1=default&amp;2=en&amp;3=" token="azgJVLqLEAKZdxi0uky93oQPdFY0U4Vvmg4jhaMhU_4"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Bob (not verified)</span> on 02 Jan 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2122532">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2122533" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1230991162"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Fuck me, aren't you an arrogant little Jew, preserving your own CLASSIC posts for posterity.</p> <p>Skewed perspective, Jewbacca.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2122533&amp;1=default&amp;2=en&amp;3=" token="xoDYpbivsBrF9-T0kimuAYpIEBcWhZYb7aSrX0WZHPQ"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Sandler (not verified)</span> on 03 Jan 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2122533">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2122534" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1230992598"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><blockquote><p>You cannot write a program that reads an arbitrary P and I and gives you the answer to the halting problem. It's impossible.</p></blockquote> <p>How much time you have to wait for the answer? I'd write a debugger which runs P with input I and returns <b>true</b> when P exits, or <b>false</b> when P enters a previous state (and thus would loop forever).</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2122534&amp;1=default&amp;2=en&amp;3=" token="kVZrVVDCLjtGpdjMZ6O80XgRSSnRZ72ze33A4uUZrn8"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Dante (not verified)</span> on 03 Jan 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2122534">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2122535" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1231060394"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p><b>Dante</b>: finite time. So your debugger itself must be proven not to ever, under any circumstances, get on an infinite loop itself. Also, returning to a previous state is only one kind of infinite looping. There are also recursion infinite loops, forks, or legit programs which never go back to a previous state and still loop forever --- like any program that computes an uncomputable number (say, e). Your debugger would have to be able to interpret what the program is doing, and tell whether or not it eventually halts. If you did come up with one such debugger, one nice sanity check would be to make it test itself and see if it can tell whether or not, for any given input, it eventually halts.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2122535&amp;1=default&amp;2=en&amp;3=" token="u_Ujf-0uKgSVdObrY84tixzAwCFqUAcTQcVbraNXrNw"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Bruno (not verified)</span> on 04 Jan 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2122535">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2122536" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1231196661"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Dante,</p> <p>"I'd write a debugger which runs P with input I and returns true when P exits, or false when P enters a previous state (and thus would loop forever). "</p> <p>Ok, how about I modify your debugger, now called D, to loop infinitely if the input program halts and halt if the program would loop infinitely. [I'm pretty sure this is right, it's 5am though]</p> <p>What if I call D(D)? Does it halt or not?</p> <p>It's essentially *this statement is false* in a computer progrm :)</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2122536&amp;1=default&amp;2=en&amp;3=" token="wRsLSmnn4EnP6hym1kk2rerx2pnMgFHuqJq7y2Z3XZg"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Ian Calvert (not verified)</span> on 05 Jan 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2122536">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2122537" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1231224405"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>I realize I'm probably wrong and people have been looking a lot at this problem, I just don't see it.</p> <p>@Bruno<br /> So I have to make a proof, beside the program? I don't think I can, other than "It's trivial to see that D answers the halting problem, if computing resources are not a problem (memory, time)" ;)<br /> About P being the program for e/weirdly recursive, since there are only so many machine instructions, D is possible. Unless Marks also means "on any (future) machine architecture".</p> <p>@Ian<br /> My debugger would work since it never halts, for any program: just returns <b>true</b> or (after a couple of days) <b>false</b>.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2122537&amp;1=default&amp;2=en&amp;3=" token="k3JrcicLJe9XLmezGuuxJ_5URvldMPxeUDUEQoJEBPM"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Dante (not verified)</span> on 06 Jan 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2122537">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2122538" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1231224776"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p><b>Repost, please ignore/delete my previous entry</b></p> <p>I realize I'm probably wrong and people have been looking a lot at this problem, I just don't see it.</p> <p>@Bruno<br /> So I have to make a proof, beside the program? I don't think I can, other than "It's trivial to see that D answers the halting problem, if computing resources are not a problem (memory, time)" ;)<br /> About P being the program for e/weirdly recursive, since there are only so many machine instructions, D is possible. Unless Mark also means "on any (future) machine architecture".</p> <p>@Ian<br /> My debugger would work since it always halts, for any program: just returns true or (after a couple of days) false.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2122538&amp;1=default&amp;2=en&amp;3=" token="_Mc571q1B6kEHP9R_Q5pRAyhz6mcoTDzvqcUSnidUkc"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Dante (not verified)</span> on 06 Jan 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2122538">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2122539" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1231275131"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Jonathan Vos Post said:</p> <p>"...the set of computable numbers is not closed under basic operations such as taking the supremum of a bounded sequence..."</p> <p>Of course computable numbers are not closed under incomputable operations!</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2122539&amp;1=default&amp;2=en&amp;3=" token="Dm4NbC4-AQyGNTBWEwNFH_NA8vds-bxO70CHnuuRIxQ"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Kyle Lahnakoski (not verified)</span> on 06 Jan 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2122539">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2122540" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1231284383"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Kyle: which is why I said so, in pointing out the flaw in what Bishop and Richman call the Russian school of constructive mathematics. The point seems to be that we NEED the full set of the Real Numbers to do Calculus. We can't throw the baby out with the ontological bathwater. </p> <p>Unless you can find some position in between what is obvious to you and what is desired by those hard-core wishful-thinking constructivists. If so, you might have something worth publishing.</p> <p>How much CAN we do with only computable numbers? What's the least that we need to add to the set to do some of the other things basic to Mathematics?</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2122540&amp;1=default&amp;2=en&amp;3=" token="Ip5Y7dKHntRy4XUaGDdzbcKkURozJcBXKHDDfcbZioY"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://magicdragon.com" lang="" typeof="schema:Person" property="schema:name" datatype="">Jonathan Vos Post (not verified)</a> on 06 Jan 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2122540">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2122541" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1241548987"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>These are deep waters. (Yeah, I know this is very very late, and no-one except maybe Mark CC will read it.)</p> <p>It's true, as you've stated, that almost all reals are undefinable. There is no pattern or rule that picks them out, no algorithm that can generate their digits.</p> <p>Even worse, the standard axioms of set theory tell us almost nothing about how *many* of these undefinable reals there are.</p> <p>Using forcing one can (in a certain sense) adjoin extra real numbers to the universe. One can even add vastly more reals than there were to begin with. (This can be done without collapsing any cardinals - see next para.)</p> <p>Going the other way, one can using forcing to "collapse" a cardinal and the make the continuum hypothesis come out true: Whatever number 2^(aleph_0) is, one can graft onto the universe a new set which is a bijection between that number and aleph_1 (and this can be done without inadvertently adding any extra reals.)</p> <p>Intuitively the idea of "all subsets of the natural numbers" seems so straightforward and unambiguous that it must determine a single abstract entity just as definitively as the Peano postulates determine the natural numbers. However, the independence phenomena of set theory make this sound naive.</p> <p>Even so, I would disagree with any normative suggestion that comes out of this (e.g. "we ought to think of math in terms of computable numbers only"), for the following reasons:</p> <p>Surprisingly, in "normal mathematics" the indeterminate properties of the reals (of which cardinality is the most notable, but not the only one) rarely come to the fore, and the reals do behave like a single Platonic entity. Furthermore, in order for the basic theorems of real analysis to come out right, we *do* need the reals to be complete, which presupposes uncountability, which requires there to be all of those mysterious uncomputable numbers floating around.</p> <p>Also, the suggestion that we somehow 'disregard' uncomputable numbers inevitably entails that set theorists should simply put their pens down and go and do something 'worthwhile' instead. However, if set theorists can prove interesting results about them (and they can) then of course they're doing something just as 'worthwhile' as researchers in any other esoteric branch of pure maths.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2122541&amp;1=default&amp;2=en&amp;3=" token="hfIwHeMx8qj_TseFfwLDo6cg40Bz53w7w8iz_oC972Q"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">NeilF (not verified)</span> on 05 May 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2122541">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> </section> <ul class="links inline list-inline"><li class="comment-forbidden"><a href="/user/login?destination=/goodmath/2008/12/31/my-favorite-strange-number-cla%23comment-form">Log in</a> to post comments</li></ul> Wed, 31 Dec 2008 07:53:39 +0000 goodmath 92674 at https://scienceblogs.com Continued Fractions (classic repost) https://scienceblogs.com/goodmath/2008/12/30/continued-fractions-classic-re <span>Continued Fractions (classic repost)</span> <div class="field field--name-body field--type-text-with-summary field--label-hidden field--item"><p><em> I'm away on vacation this week, taking my kids to Disney World. Since I'm not likely to<br /> have time to write while I'm away, I'm taking the opportunity to re-run an old classic series<br /> of posts on numbers, which were first posted in the summer of 2006. These posts are mildly<br /> revised.</em></p> <p> One of the annoying things about how we write numbers is the fact that we generally write things one of two ways: as fractions, or as decimals.</p> <p> You might want to ask, "Why is that annoying?" (And in fact, that's what I want you to ask, or else there's no point in my writing the rest of this!)</p> <p> It's annoying because both fractions and decimals can both only describe<br /> <em>rational</em> numbers - that is, numbers that are a perfect ratio of two integers.<br /> The problem with that is that <em>most</em> numbers aren't rational. Our standard<br /> notations are <em>incapable</em> of representing the precise values of the overwhelming majority of numbers!</p> <p> But it's even more annoying than that: if you use decimals, then there are lots of<br /> rational numbers that you can't represent exactly (i.e., 1/3); and if you use fractions, then<br /> it's hard to express the idea that the fraction isn't exact. (How do you write π as a<br /> fraction? 22/7 is a standard fractional approximation, but how do you say π, which is <em>almost</em> 22/7?)</p> <p>So what do we do?</p> <!--more--><p>One of the answers is something called <em>continued fractions</em>. A continued fraction is a<br /> very neat thing. Here's the idea: take a number where you don't know it's fractional form.<br /> Pick the nearest simple fraction 1/n that's just a <em>little bit too large</em>. If you were looking at, say, 0.4, you'd take 1/2 - it's a bit bigger. Now - you've got an approximation, but it's too large. So that means that the demoninator is <em>too small</em>. So you add a correction to the denominator to make it a little bit bigger. And you just keep doing that - you approximate the correction to the denominator by adding a fraction to the denominator that's just a little too big, and then you add a correction to <em>that</em> correction.</p> <p>Let's look at an example: 2.3456.</p> <ol> <li> It's close to 2. So we start with 2 + (0.3456).</li> <li> Now, we start approximating the fraction. The way we do that is we take the <em>reciprocal</em> of 0.3456 and take the integer part of it: 1/0.3456 rounded down is 2 . So we make it 2 + 1/2; and we know that the denominator is off by 0.3088.</li> <li> We take the reciprocal again, and get 3, and it's off by 0.736.</li> <li> We take the reciprocal again, and get 1, and it's off by 0.264.</li> <li> Next we get 3, but it's off by 208/1000.</li> <li> Then 4, off by 0.168.</li> <li> Then 5, off by 0.16.</li> <li> Then 6, off by 0.25.</li> <li> Then 4, off by 0; so now we have an exact result.</li> </ol> <p> So as a continued fraction, 2.3456 looks like:</p> <p><img src="http://scienceblogs.com/goodmath/wp-content/blogs.dir/476/files/2012/04/i-06f9976ec4906e5981eb6fb21843c267-square-continued.jpg" alt="i-06f9976ec4906e5981eb6fb21843c267-square-continued.jpg" /></p> <p> As a shorthand, continued fractions are normally written using a list notation inside of square brackets: the integer part, following by a semicolon, followed by a comma-separated list of the denominators of each of the fractions. So our continued fraction for 2.3456 would be written [2; 2, 3, 1, 3, 4, 5, 6, 4].</p> <p><img src="http://scienceblogs.com/goodmath/wp-content/blogs.dir/476/files/2012/04/i-5a45e533d01b481499b4985796ad6f9d-nine-by-sixteen.png" alt="i-5a45e533d01b481499b4985796ad6f9d-nine-by-sixteen.png" /></p> <p> There's a very cool visual way of understanding that algorithm. I'm not going to show it for 2.3456, because it's a bit too complicated - it would be hard to draw out the complete diagram for in a legible way. So instead, we'll look at a simpler number to make the visual work. Let's write 9/16ths as a continued fraction. Basically, we make a grid consisting of 16 squares across by 9 squares up and down, like this one.</p> <p><img src="http://scienceblogs.com/goodmath/wp-content/blogs.dir/476/files/2012/04/i-a4dfc2bdd25656a2ee8eb21d508a8988-nine-by-sixteen-step1.png" alt="i-a4dfc2bdd25656a2ee8eb21d508a8988-nine-by-sixteen-step1.png" /></p> <p> We draw the largest square we can on that grid. The number of squares of that size that we can draw is the first digit of the continued fraction. For 9/16ths, we can draw one 9×9 square - so our first digit is one, and we're left with a 7×9 rectangle:</p> <p> Now we just repeat: draw the largest square we can. That's a 7×7, and we can only draw one of it. So the second digit is one; and we're left with a 7×2:</p> <p><img src="http://scienceblogs.com/goodmath/wp-content/blogs.dir/476/files/2012/04/i-5ee6ff746fabfefed882044255402cfa-nine-by-sixteen-step2.png" alt="i-5ee6ff746fabfefed882044255402cfa-nine-by-sixteen-step2.png" /></p> <p> And repeat: the largest square we can draw is a 2×2, and we can draw three of them. So the next digit is a three; and we're left with 1×2 - which is 2 1×1, so the last digit is a 2.</p> <p><img src="http://scienceblogs.com/goodmath/wp-content/blogs.dir/476/files/2012/04/i-d31cd057cd7aa7c192c2c5cc8fd50c4e-nine-by-sixteen-last.png" alt="i-d31cd057cd7aa7c192c2c5cc8fd50c4e-nine-by-sixteen-last.png" /></p> <p> So the continued fraction for 9/16ths is 1/(1+1/(1+3/(1+2))), or [0; 1, 1, 3, 2].</p> <p> One incredibly nifty thing about this way of writing numbers is: what's the reciprocal of 2.3456, aka [2; 2, 3, 1, 3, 4, 5, 6, 4]? It's [0; 2, 2, 3, 1, 3, 4, 5, 6, 4]. We just add a zero to the front as the integer part, and push everything else one place to the right. If it was a zero in front, then we would have removed the zero and pulled everything else one place to the left.</p> <p> Using continued fractions, we can represent <em>any</em> rational number in a finite-length continued fraction. We still can't directly represent irrational numbers - they're going to be infinite continued fractions. But we can usually write some expression<br /> to show how to continue the number, and for a given precision, we can approximate<br /> irrational numbers with a much smaller representation. </p> <p> So, as I just said, we represent irrational numbers using <em>infinite</em> continued fractions. So there's an infinite series of correction fractions. You can understand it as a series of every-improving approximations of the value of the number. And you can define it using a recurrence relation (that is, a recursive formula) for how to get to the next digit -<br /> that recurrence relation is the real key - we can include a simple equation that describes<br /> how, given the current finite continued fraction, to generate the next step.</p> <p> For example, π = [3; 7, 15, 1, 292, 1, ...]. If we work that out, the first six places of the continued fraction for pi work out in decimal form to 3.14159265392. That's correct to the first 11 places in decimal. So 9 numerals of continued<br /> fractions gives us 11 decimal places. In general, the conciseness savings of continued fractions is even better than that. </p><p> I'll close with a very cool property of continued fractions. The square root of most<br /> numbers (excepting the perfect squares) is irrational. In continued fractions,<br /> they're still irrational - that is, they're infinite continued fractions. But all irrational<br /> square roots form repeating continued fractions. The coolest example of this? The square root of 2 in continued fractions is [1; 2, 2, 2, 2, ...].</p> </div> <span><a title="View user profile." href="/goodmath" lang="" about="/goodmath" typeof="schema:Person" property="schema:name" datatype="">goodmath</a></span> <span>Tue, 12/30/2008 - 02:05</span> <div class="field field--name-field-blog-tags field--type-entity-reference field--label-inline"> <div class="field--label">Tags</div> <div class="field--items"> <div class="field--item"><a href="/tag/classics" hreflang="en">classics</a></div> <div class="field--item"><a href="/tag/numbers" hreflang="en">numbers</a></div> </div> </div> <section> <article data-comment-user-id="0" id="comment-2122502" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1230630984"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Following the procedure that you described, I get [2; 2, 1, 8, 2, 1, 1, 4]. Adding all the fractions I get 2+216/625, which is indeed 2.3456.</p> <p>In particular I can't follow this sentence:</p> <p>"So we make it 2 + 1/2; and we know that the denominator is off by 0.3088."</p> <p>0.3088 wrt what? 0.3456 = 1/(2+x) and solving for x that's 0.893[518], not 0.3088 ... what am I missing?</p> <p>Put in another way, 0.3456 = 216/625 = 1/(2+x) (yes, I know, this defeats the whole purpose of the exercise), so x = 193/216.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2122502&amp;1=default&amp;2=en&amp;3=" token="ZhOffuszeQur7Qfub5LC7HK9WOdBO-UEY7kjlx8bmp4"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://blog.ksub.org/marcelo/" lang="" typeof="schema:Person" property="schema:name" datatype="">Marcelo (not verified)</a> on 30 Dec 2008 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2122502">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2122503" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1230631510"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Also, the continued fraction you presented simplifies down to 2+8631/19555</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2122503&amp;1=default&amp;2=en&amp;3=" token="nNFQOH095TxoefFM9Gx81ake-ob1BH0Ll-BS6g45iek"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://blog.ksub.org/marcelo/" lang="" typeof="schema:Person" property="schema:name" datatype="">Marcelo (not verified)</a> on 30 Dec 2008 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2122503">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2122504" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1230636235"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>An interesting property: it looks as though [0; 0, n1, n2, ...] = [n1; n2, ...] too, since 1/(1/n) = n for any n.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2122504&amp;1=default&amp;2=en&amp;3=" token="3mNdJQsAXakoPdAaiqON3sDrkuOP63oR4PPbJ4Go794"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Samuel A. Falvo II (not verified)</span> on 30 Dec 2008 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2122504">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2122505" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1230636556"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>For the second example, the line 1/(1+1/(1+3/(1+2))) should be </p> <p>1/(1+1/(1+1/(3+1/2)))</p> <p>Hope you have a good time at Disney!</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2122505&amp;1=default&amp;2=en&amp;3=" token="cBECVDd40T_ejy8BCmxGDW9kbds5PXGG-GzFL2f8U4s"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Kyle (not verified)</span> on 30 Dec 2008 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2122505">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2122506" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1230642175"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Now all we need is algorithms for doing arithmetic on 'em (including those pesky infinite recurring ones), and voila! exact computation with roots.</p> <p>What about higher-degree roots - cube roots and the like?</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2122506&amp;1=default&amp;2=en&amp;3=" token="38ST-uvHn74myfkBiTF8OzNiZokY24k6VxeqYPUv-Co"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://www.users.bigpond.com/pmurray" lang="" typeof="schema:Person" property="schema:name" datatype="">Paul Murray (not verified)</a> on 30 Dec 2008 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2122506">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2122507" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1230657812"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Here's a cute one: the continued fraction expansion of<br /> Sqrt(2 + Sqrt(3 + Sqrt(5 + Sqrt(7 + Sqrt(11 + ... + Sqrt(Prime(n))))) = 2, 9, 1, 1, 1, 7, 3, 5, 4, 1, 1, 1, 3, 2, 2, 1, 1, 1, 1, 15, 1, 3, 1, 41, ...</p> <p><a href="http://www.research.att.com/~njas/sequences/A105548">A105548 Continued fraction expansion of prime nested radical A105546.</a></p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2122507&amp;1=default&amp;2=en&amp;3=" token="bv3hcgm2ZkBmgD07BZ1XcuXOK-eC0UmJsvKt4kABGbo"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://magicdragon.com" lang="" typeof="schema:Person" property="schema:name" datatype="">Jonathan Vos Post (not verified)</a> on 30 Dec 2008 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2122507">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2122508" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1230661782"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Actually, the algorithms for doing arithmetic on continued fractions are well known. Yes, they work on the infinite ones -- the first few terms of the answer can be determined by examining the first few terms of the inputs.</p> <p>This all works well in a language with lazy lists like Haskell -- great fun!</p> <p>There is a classic unpublished paper by Bill Gosper explaining how to do arithmetic and other cool things with continued fractions that I'm sure must be available somewhere on the web.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2122508&amp;1=default&amp;2=en&amp;3=" token="GtlVYFvAmiqLJ_fgY-bDov7zajliMRtaN8VCbcpsdzY"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Alan Bawden (not verified)</span> on 30 Dec 2008 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2122508">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2122509" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1230665007"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>thenks****</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2122509&amp;1=default&amp;2=en&amp;3=" token="nkA7-QOixY18Sa2OIBeQKjEkrqntTb5LWsYgFN1CxMo"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://www.bizimlesohbet.com" lang="" typeof="schema:Person" property="schema:name" datatype="">bizimlesohbet (not verified)</a> on 30 Dec 2008 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2122509">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2122510" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1230697129"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Found it! Gosper's paper is here:<br /> <a href="http://www.tweedledum.com/rwg/cfup.htm">http://www.tweedledum.com/rwg/cfup.htm</a><br /> A must-read for anybody serious about continued fractions.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2122510&amp;1=default&amp;2=en&amp;3=" token="98qkhWkl2TZLDE8jYzUKNuhkQdstFFhd1oXQ5co402E"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Alan Bawden (not verified)</span> on 30 Dec 2008 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2122510">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2122511" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1230703216"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>"But we can usually write some expression to show how to continue the number"</p> <p>How often is that true? Do they have to be algebraic or computable? Is there a recurrence relation for pi?</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2122511&amp;1=default&amp;2=en&amp;3=" token="iTt_ms_cAiLWeLfC9jJ1EBw1-Q1Zj2AEtjNE7xc-kNI"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">John Fouhy (not verified)</span> on 31 Dec 2008 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2122511">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2122512" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1230751764"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>Gosper wrote several "HAKMEM" memos on continued fractions:</p> <p><a href="http://www.inwap.com/pdp10/hbaker/hakmem/cf.html">http://www.inwap.com/pdp10/hbaker/hakmem/cf.html</a></p> <p>This is the same Gosper, by the way, who invented the "Glider Gun" for Conway's Game of Life.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2122512&amp;1=default&amp;2=en&amp;3=" token="V91XjNq9TmTFc06r0WJGoALVV8H3y34bUWLhn4S5rkY"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="https://self-evident.org/" lang="" typeof="schema:Person" property="schema:name" datatype="">Nemo (not verified)</a> on 31 Dec 2008 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2122512">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2122513" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1230807833"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>There's a cool little theorem - the first time I saw it was in Hardy's book - that says a continued fraction is repeating if and only if it is the representation of an algebraic number. So of course all square roots of non-transcendental numbers will be repeating. Otoh, given a nonrepeating, nonterminating continued fraction, one may deduce that the number is transcendental. So if one posits that pi is represented as a nonterminating, nonrepeating continued fraction, it pops out automatically that it must be transcendental.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2122513&amp;1=default&amp;2=en&amp;3=" token="F1ck9EfaOYbldOjE9a02a_9L5JRDvfmmo4JND1_ZQ4Q"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">ScentOfViolets (not verified)</span> on 01 Jan 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2122513">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2122514" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1230897608"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>ScentOfViolets: That theorem must use a more expanded definition of continued fractions. Repeated continued fractions of the form described here are all irrational numbers of the form (a + sqrt(b))/c, for integers a, b, and c. When you solve the repeated fraction as a recurrence, you get a quadratic equation.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2122514&amp;1=default&amp;2=en&amp;3=" token="Id0YbMg9xSckNc2vQR50KgblMPLioEbSOoL2mdWqHQk"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Dave W. (not verified)</span> on 02 Jan 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2122514">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2122515" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1230945678"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>A good resource for info on continued fractions is Ron Knott's continued fraction page at: <a href="http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/cfINTRO.html">http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/cfINTRO.html</a><br /> There is a link there to his interactive continued fraction calculator, which allows you to convert between fraction form, decimal form, and continued fraction form and calculate the intermediate convergents.</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2122515&amp;1=default&amp;2=en&amp;3=" token="v25BvHcNiZ8BR_xv-DHfOPDH9dVtfjWEErbcHfp8twE"></drupal-render-placeholder> </div> <footer> <em>By <span lang="" typeof="schema:Person" property="schema:name" datatype="">Dave W. (not verified)</span> on 02 Jan 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2122515">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> <article data-comment-user-id="0" id="comment-2122516" class="js-comment comment-wrapper clearfix"> <mark class="hidden" data-comment-timestamp="1231165879"></mark> <div class="well"> <strong></strong> <div class="field field--name-comment-body field--type-text-long field--label-hidden field--item"><p>A nice generalization of "The square root of 2 in continued fractions is [1; 2, 2, 2, 2, ...]" is:</p> <p>(the square root of (1 + n^2)) - n + 1 in continued fractions is [1; 2n, 2n, 2n, 2n, ...]</p> </div> <drupal-render-placeholder callback="comment.lazy_builders:renderLinks" arguments="0=2122516&amp;1=default&amp;2=en&amp;3=" token="9UZUXjAgpXdyaIpWO7rGCr7LhEVGufsKX8Xd7Iceclo"></drupal-render-placeholder> </div> <footer> <em>By <a rel="nofollow" href="http://magicdragon.com" lang="" typeof="schema:Person" property="schema:name" datatype="">Jonathan Vos Post (not verified)</a> on 05 Jan 2009 <a href="https://scienceblogs.com/taxonomy/term/11780/feed#comment-2122516">#permalink</a></em> <article typeof="schema:Person" about="/user/0"> <div class="field field--name-user-picture field--type-image field--label-hidden field--item"> <a href="/user/0" hreflang="und"><img src="/files/styles/thumbnail/public/default_images/icon-user.png?itok=yQw_eG_q" width="100" height="100" alt="User Image" typeof="foaf:Image" class="img-responsive" /> </a> </div> </article> </footer> </article> </section> <ul class="links inline list-inline"><li class="comment-forbidden"><a href="/user/login?destination=/goodmath/2008/12/30/continued-fractions-classic-re%23comment-form">Log in</a> to post comments</li></ul> Tue, 30 Dec 2008 07:05:21 +0000 goodmath 92673 at https://scienceblogs.com