A Blog Around The Clock

New and Exciting in PLoS ONE

There are 33 new articles in PLoS ONE today. As always, you should rate the articles, post notes and comments and send trackbacks when you blog about the papers. You can now also easily place articles on various social services (CiteULike, Mendeley, Connotea, Stumbleupon, Facebook and Digg) with just one click. Here are my own picks for the week – you go and look for your own favourites:

Diversity and Relatedness Enhance Survival in Colour Polymorphic Grasshoppers:

Evolutionary theory predicts that different resource utilization and behaviour by alternative phenotypes may reduce competition and enhance productivity and individual performance in polymorphic, as compared with monomorphic, groups of individuals. However, firm evidence that members of more heterogeneous groups benefit from enhanced survival has been scarce or lacking. Furthermore, benefits associated with phenotypic diversity may be counterbalanced by costs mediated by reduced relatedness, since closely related individuals typically are more similar. Pygmy grasshoppers (Tetrix subulata) are characterized by extensive polymorphism in colour pattern, morphology, behaviour and physiology. We studied experimental groups founded by different numbers of mothers and found that survival was higher in low than in high density, that survival peaked at intermediate colour morph diversity in high density, and that survival was independent of diversity in low density where competition was less intense. We further demonstrate that survival was enhanced by relatedness, as expected if antagonistic and competitive interactions are discriminately directed towards non-siblings. We therefore also performed behavioural observations and staged encounters which confirmed that individuals recognized and responded differently to siblings than to non-siblings. We conclude that negative effects associated with competition are less manifest in diverse groups, that there is conflicting selection for and against genetic diversity occurring simultaneously, and that diversity and relatedness may facilitate the productivity and ecological success of groups of interacting individuals.

An Investigation into the Poor Survival of an Endangered Coho Salmon Population:

To investigate reasons for the decline of an endangered population of coho salmon (O. kisutch), 190 smolts were acoustically tagged during three consecutive years and their movements and survival were estimated using the Pacific Ocean Shelf Tracking project (POST) array. Median travel times of the Thompson River coho salmon smolts to the lower Fraser River sub-array were 16, 12 and 10 days during 2004, 2005 and 2006, respectively. Few smolts were recorded on marine arrays. Freshwater survival rates of the tagged smolts during their downstream migration were 0.0-5.6% (0.0-9.0% s.e.) in 2004, 7.0% (6.2% s.e.) in 2005, and 50.9% (18.6% s.e.) in 2006. Overall smolt-to-adult return rates exhibited a similar pattern, which suggests that low freshwater survival rates of out-migrating smolts may be a primary reason for the poor conservation status of this endangered coho salmon population.

Comparative Influence of Ocean Conditions on Yellowfin and Atlantic Bluefin Tuna Catch from Longlines in the Gulf of Mexico:

Directed fishing effort for Atlantic bluefin tuna in the Gulf of Mexico (GOM), their primary spawning grounds in the western Atlantic, has been prohibited since the 1980s due to a precipitous decline of the spawning stock biomass. However, pelagic longlines targeted at other species, primarily yellowfin tuna and swordfish, continue to catch Atlantic bluefin tuna in the GOM as bycatch. Spatial and temporal management measures minimizing bluefin tuna bycatch in the GOM will likely become important in rebuilding the western Atlantic bluefin stock. In order to help inform management policy and understand the relative distribution of target and bycatch species in the GOM, we compared the spatiotemporal variability and environmental influences on the catch per unit effort (CPUE) of yellowfin (target) and bluefin tuna (bycatch). Catch and effort data from pelagic longline fisheries observers (1993-2005) and scientific tagging cruises (1998-2002) were coupled with environmental and biological data. Negative binomial models were used to fit the data for both species and Akaike’s Information Criterion (corrected for small sample size) was used to determine the best model. Our results indicate that bluefin CPUE had higher spatiotemporal variability as compared to yellowfin CPUE. Bluefin CPUE increased substantially during the breeding months (March-June) and peaked in April and May, while yellowfin CPUE remained relatively high throughout the year. In addition, bluefin CPUE was significantly higher in areas with negative sea surface height anomalies and cooler sea surface temperatures, which are characteristic of mesoscale cyclonic eddies. In contrast, yellowfin CPUE was less sensitive to environmental variability. These differences in seasonal variability and sensitivity to environmental influences suggest that bluefin tuna bycatch in the GOM can be reduced substantially by managing the spatial and temporal distribution of the pelagic longline effort without substantially impacting yellowfin tuna catches.

Dissecting the Clinical Heterogeneity of Autism Spectrum Disorders through Defined Genotypes:

The etiology of autism spectrum disorders (ASD) is largely determined by different genetic factors of variable impact. This genetic heterogeneity could be a factor to explain the clinical heterogeneity of autism spectrum disorders. Here, a first attempt is made to assess whether genetically more homogeneous ASD groups are associated with decreased phenotypic heterogeneity with respect to their autistic symptom profile. The autistic phenotypes of ASD subjects with 22q11 deletion syndrome (22q11DS) and ASD subjects with Klinefelter Syndrome (KS) were statistically compared to the symptom profile of a large (genetically) heterogeneous ASD sample. Autism diagnostic interview-revised (ADI-R) variables were entered in different statistical analyses to assess differences in symptom homogeneity and the feasibility of discrimination of group-specific ASD-symptom profiles. The results showed substantially higher symptom homogeneity in both the genetic disorder ASD groups in comparison to the heterogeneous ASD sample. In addition, a robust discrimination between 22q11-ASD and KS-ASD and idiopathic ASD phenotypes was feasible on the basis of a reduced number of autistic scales and symptoms. The lack of overlap in discriminating subscales and symptoms between KS-ASD and 22q11DS-ASD suggests that their autistic symptom profiles cluster around different points in the total diagnostic space of profiles present in the general ASD population. The findings of the current study indicate that the clinical heterogeneity of ASDs may be reduced when subgroups based on a specific genotype are extracted from the idiopathic ASD population. The current strategy involving the widely used ADI-R offers a relatively straightforward possibility for assessing genotype-phenotype ASD relationships. Reverse phenotype strategies are becoming more feasible, given the accumulating evidence for the existence of genetic variants of large effect in a substantial proportion of the ASD population.

Selection and Presentation of Imaging Figures in the Medical Literature:

Images are important for conveying information, but there is no empirical evidence on whether imaging figures are properly selected and presented in the published medical literature. We therefore evaluated the selection and presentation of radiological imaging figures in major medical journals. We analyzed articles published in 2005 in 12 major general and specialty medical journals that had radiological imaging figures. For each figure, we recorded information on selection, study population, provision of quantitative measurements, color scales and contrast use. Overall, 417 images from 212 articles were analyzed. Any comment/hint on image selection was made in 44 (11%) images (range 0-50% across the 12 journals) and another 37 (9%) (range 0-60%) showed both a normal and abnormal appearance. In 108 images (26%) (range 0-43%) it was unclear whether the image came from the presented study population. Eighty-three images (20%) (range 0-60%) had any quantitative or ordered categorical value on a measure of interest. Information on the distribution of the measure of interest in the study population was given in 59 cases. For 43 images (range 0-40%), a quantitative measurement was provided for the depicted case and the distribution of values in the study population was also available; in those 43 cases there was no over-representation of extreme than average cases (p = 0.37). The selection and presentation of images in the medical literature is often insufficiently documented; quantitative data are sparse and difficult to place in context.

Industrial Melanism in the Peppered Moth Is Not Associated with Genetic Variation in Canonical Melanisation Gene Candidates:

Industrial melanism in the peppered moth (Biston betularia) is an iconic case study of ecological genetics but the molecular identity of the gene determining the difference between the typical and melanic (carbonaria) morphs is entirely unknown. We applied the candidate gene approach to look for associations between genetic polymorphisms within sixteen a priori melanisation gene candidates and the carbonaria morph. The genes were isolated and sequence characterised in B. betularia using degenerate PCR and from whole-transcriptome sequence. The list of candidates contains all the genes previously implicated in melanisation pattern differences in other insects, including aaNAT, DOPA-decarboxylase, ebony, tan, tyrosine hydroxylase, yellow and yellow2 (yellow-fa). Co-segregation of candidate gene alleles and carbonaria morph was tested in 73 offspring of a carbonaria male-typical female backcross. Surprisingly, none of the sixteen candidate genes was in close linkage with the locus controlling the carbonaria-typical polymorphism. Our study demonstrates that the ‘carbonaria gene’ is not a structural variant of a canonical melanisation pathway gene, neither is it a cis-regulatory element of these enzyme-coding genes. The implication is either that we have failed to characterize an unknown enzyme-coding gene in the melanisation pathway, or more likely, that the ‘carbonaria gene’ is a higher level trans-acting factor which regulates the spatial expression of one or more of the melanisation candidates in this study to alter the pattern of melanin production.

Bare Bones Pattern Formation: A Core Regulatory Network in Varying Geometries Reproduces Major Features of Vertebrate Limb Development and Evolution:

Major unresolved questions regarding vertebrate limb development concern how the numbers of skeletal elements along the proximodistal (P-D) and anteroposterior (A-P) axes are determined and how the shape of a growing limb affects skeletal element formation. There is currently no generally accepted model for these patterning processes, but recent work on cartilage development (chondrogenesis) indicates that precartilage tissue self-organizes into nodular patterns by cell-molecular circuitry with local auto-activating and lateral inhibitory (LALI) properties. This process is played out in the developing limb in the context of a gradient of fibroblast growth factor (FGF) emanating from the apical ectodermal ridge (AER). We have simulated the behavior of the core chondrogenic mechanism of the developing limb in the presence of an FGF gradient using a novel computational environment that permits simulation of LALI systems in domains of varying shape and size. The model predicts the normal proximodistal pattern of skeletogenesis as well as distal truncations resulting from AER removal. Modifications of the model’s parameters corresponding to plausible effects of Hox proteins and formins, and of the reshaping of the model limb, bud yielded simulated phenotypes resembling mutational and experimental variants of the limb. Hypothetical developmental scenarios reproduce skeletal morphologies with features of fossil limbs. The limb chondrogenic regulatory system operating in the presence of a gradient has an inherent, robust propensity to form limb-like skeletal structures. The bare bones framework can accommodate ancillary gene regulatory networks controlling limb bud shaping and establishment of Hox expression domains. This mechanism accounts for major features of the normal limb pattern and, under variant geometries and different parameter values, those of experimentally manipulated, genetically aberrant and evolutionary early forms, with no requirement for an independent system of positional information.

The Acid Test of Fluoride: How pH Modulates Toxicity:

It is not known why the ameloblasts responsible for dental enamel formation are uniquely sensitive to fluoride (F−). Herein, we present a novel theory with supporting data to show that the low pH environment of maturating stage ameloblasts enhances their sensitivity to a given dose of F−. Enamel formation is initiated in a neutral pH environment (secretory stage); however, the pH can fall to below 6.0 as most of the mineral precipitates (maturation stage). Low pH can facilitate entry of F− into cells. Here, we asked if F− was more toxic at low pH, as measured by increased cell stress and decreased cell function. Treatment of ameloblast-derived LS8 cells with F− at low pH reduced the threshold dose of F− required to phosphorylate stress-related proteins, PERK, eIF2α, JNK and c-jun. To assess protein secretion, LS8 cells were stably transduced with a secreted reporter, Gaussia luciferase, and secretion was quantified as a function of F− dose and pH. Luciferase secretion significantly decreased within 2 hr of F− treatment at low pH versus neutral pH, indicating increased functional toxicity. Rats given 100 ppm F− in their drinking water exhibited increased stress-mediated phosphorylation of eIF2α in maturation stage ameloblasts (pH<6.0) as compared to secretory stage ameloblasts (pH~7.2). Intriguingly, F−-treated rats demonstrated a striking decrease in transcripts expressed during the maturation stage of enamel development (Klk4 and Amtn). In contrast, the expression of secretory stage genes, AmelX, Ambn, Enam and Mmp20, was unaffected. The low pH environment of maturation stage ameloblasts facilitates the uptake of F−, causing increased cell stress that compromises ameloblast function, resulting in dental fluorosis.

Bacterial Acquisition in Juveniles of Several Broadcast Spawning Coral Species:

Coral animals harbor diverse microorganisms in their tissues, including archaea, bacteria, viruses, and zooxanthellae. The extent to which coral-bacterial associations are specific and the mechanisms for their maintenance across generations in the environment are unknown. The high diversity of bacteria in adult coral colonies has made it challenging to identify species-specific patterns. Localization of bacteria in gametes and larvae of corals presents an opportunity for determining when bacterial-coral associations are initiated and whether they are dynamic throughout early development. This study focuses on the early onset of bacterial associations in the mass spawning corals Montastraea annularis, M. franksi, M. faveolata, Acropora palmata, A. cervicornis, Diploria strigosa, and A. humilis. The presence of bacteria and timing of bacterial colonization was evaluated in gametes, swimming planulae, and newly settled polyps by fluorescence in situ hybridization (FISH) using general eubacterial probes and laser-scanning confocal microscopy. The coral species investigated in this study do not appear to transmit bacteria via their gametes, and bacteria are not detectable in or on the corals until after settlement and metamorphosis. This study suggests that mass-spawning corals do not acquire, or are not colonized by, detectable numbers of bacteria until after larval settlement and development of the juvenile polyp. This timing lays the groundwork for developing and testing new hypotheses regarding general regulatory mechanisms that control bacterial colonization and infection of corals, and how interactions among bacteria and juvenile polyps influence the structure of bacterial assemblages in corals.

Phylogenetic Distribution of Fungal Sterols:

Ergosterol has been considered the “fungal sterol” for almost 125 years; however, additional sterol data superimposed on a recent molecular phylogeny of kingdom Fungi reveals a different and more complex situation. The interpretation of sterol distribution data in a modern phylogenetic context indicates that there is a clear trend from cholesterol and other Δ5 sterols in the earliest diverging fungal species to ergosterol in later diverging fungi. There are, however, deviations from this pattern in certain clades. Sterols of the diverse zoosporic and zygosporic forms exhibit structural diversity with cholesterol and 24-ethyl -Δ5 sterols in zoosporic taxa, and 24-methyl sterols in zygosporic fungi. For example, each of the three monophyletic lineages of zygosporic fungi has distinctive major sterols, ergosterol in Mucorales, 22-dihydroergosterol in Dimargaritales, Harpellales, and Kickxellales (DHK clade), and 24-methyl cholesterol in Entomophthorales. Other departures from ergosterol as the dominant sterol include: 24-ethyl cholesterol in Glomeromycota, 24-ethyl cholest-7-enol and 24-ethyl-cholesta-7,24(28)-dienol in rust fungi, brassicasterol in Taphrinales and hypogeous pezizalean species, and cholesterol in Pneumocystis. Five dominant end products of sterol biosynthesis (cholesterol, ergosterol, 24-methyl cholesterol, 24-ethyl cholesterol, brassicasterol), and intermediates in the formation of 24-ethyl cholesterol, are major sterols in 175 species of Fungi. Although most fungi in the most speciose clades have ergosterol as a major sterol, sterols are more varied than currently understood, and their distribution supports certain clades of Fungi in current fungal phylogenies. In addition to the intellectual importance of understanding evolution of sterol synthesis in fungi, there is practical importance because certain antifungal drugs (e.g., azoles) target reactions in the synthesis of ergosterol. These findings also invalidate use of ergosterol as an indicator of biomass of certain fungal taxa (e.g., Glomeromycota). Data from this study are available from the Assembling the Fungal Tree of Life (AFTOL) Structural and Biochemical Database: http://aftol.umn.edu.

Comments

  1. #1 Jonathan Vos Post
    May 29, 2010

    I have emailed to a client “Dissecting the Clinical Heterogeneity of Autism Spectrum Disorders through Defined Genotypes” and hope to discuss the clinical implications with said client, face-to-face, next week. It is potentially a very important paper.