analysis

Wow. In xkcd 681 comic, there is an impressive illustration of the common term "gravity well". Here is a small part of that large image: I can't resist. I must talk about this awesome illustration. My goal for this post is to help someone understand that comic (although the comic itself does a pretty good job). Energy Energy is the key here. Here, I will talk about two types of energy - kinetic energy and field energy. In this case, kinetic energy is basically just the energy associated with something moving. Field energy is the energy stored in the gravitational field. You could…
Some time ago, I wrote about the awesome things the Greeks did in astronomy. Basically they calculated the size of the Earth, distance and size of the moon and distance and size of the sun. The value obtained for the distance to the sun was a bit off, but still a bang up job if you ask me. (where bang-up is meant as a good thing) If the greeks were in my introductory physics lab, they would need to include uncertainties with their measurements. What would the uncertainty in the final value look like? In my introductory physics lab course, I have students measure things and estimate the…
This idea comes from my friend Thomas. His son is like mine in that they both think LEGO are awesome, and they are correct. For some reason, Thomas decided to calculate the price per piece of LEGO in each set. To promote repeatability, I decided to do this also. Looking at the catalog at LEGO.com, I can get both the price of each set and how many pieces it has. Just a note, I looked at almost all of the Star Wars LEGO series and some other select themes. I didn't include any sets that had been marked down in price. I will put the first plot on down below, maybe this would be a good…
What happens when your kids won't give you a turn on the Wii? Simple. You take their LEGO bricks and their slinky and do some physics. I will keep this simple. Basically, I created a slinky holder out of LEGO pieces and added LEGO bricks to the end to stretch it. Here is the video. Lego + Slinky = Physics from Rhett Allain on Vimeo. Maybe in an un-Dot Physics fashion, I am not going to analyze this data. I am not going to even describe the physics. Instead, I will leave this as a What Can You Do With This in the style of Dan Meyer. I will give a couple of hints. First, I put this on…
In part I of this post, I talked about the basics of projectile motion with no air resistance. Also in that post, I showed that (without air resistance) the angle to throw a ball for maximum range is 45 degrees. When throwing a football, there is some air resistance this means that 45 degree is not necessarily the angle for the greatest range. Well, can't I just do the same thing as before? It turns out that it is a significantly different problem when air resistance is added. Without air resistance, the acceleration was constant. Not so now, my friend. The problem is that air…
On a previous episode of The MythBusters, Adam and Jamie made a lead balloon float. I was impressed. Anyway, I decided to give a more detailed explanation on how this happens. Using the thickness of foil they had, what is the smallest balloon that would float? If the one they created were filled all the way, how much could it lift? First, how does stuff float at all? There are many levels that this question could be answered. I could start with the nature of pressure, but maybe I will save that for another day. So, let me start with pressure. The reason a balloon floats is because the air…
So, analysis of the movie Up is pretty popular in the blogosphere. Figure I might as well surf the popularity wave. So, I have a couple more questions. The most important thing to estimate is the mass of the house. I am going to completely ignore the buoyancy of the house. I figure this will be insignificant next to the buoyancy needed. Anyway, let me go ahead and recap what has already been done on this in the blogosphere. Wired Science - How Pixar's Up House Could Really Fly - from that post: First, they calculated (seemingly correct) that the buoyancy of helium is 0.067 pounds per…
Which wastes more fuel? (and thus produces more carbon dioxide). This is a difficult to question to answer for a variety of reasons. The main reason is that a speed change from 71 mph to 70 mph is different than a reduction from 56 to 55 mph. First, let me be clear that the question of how much fuel is wasted using daytime running lights (or DRL as they are called) has already been addressed. The first source I found was howstuffworks.com Assumptions The daytime running lights on a car run at about 100 watts (for the pair) The energy density of gasoline is 1.21 x 108 Joules/gallon. A car is…
One of my students showed me this game, Fantastic Contraption. The basic idea is to use a couple of different "machine" parts to build something that will move an object into a target area. Not a bad game. But what do I do when I look at a game? I think - hey! I wonder what kind of physics this "world" uses. This is very similar to my analysis of the game Line Rider except completely different. Fantastic Contraption gives the unique opportunity to build whatever you want. This is great for creating "experiments" in this world. The first step is to "measure" some stuff. The game…
Fight Science is an entertaining show. Great graphics. The basic idea is to look at the science in different fighting styles. They had a clip-style commercial on it during a MythBusters episode I was watching. And from that, I can say that the kicking looked cool, but the science needs some work. The Setup The basic idea is that they wanted to compare kicks from different fighting styles. From what I can gather, they collected data by having some dudes kick this "kicking bag". During the kick, they measured the force exerted on the bag and they had a sensor on the kicker's leg - I…
Maybe this could fall under my "physics of parkour". It could also apply to the MythBusters "dumpster diving" episode. In both of these cases, the question is: how far can you jump off of something and not severely hurt yourself. They do this a lot in parkour. Here are some examples: There are a ton of these things on youtube. Let me go ahead and say it. I would not recommend trying any of this stuff. Even reading this blog won't adequately prepare you. So, if you go ahead and try to do some cool jump, don't blame me for your injuries. Now that the warning is out there - let me get on…
Maybe you have noticed how much material there was (for me at least) in last week's MythBusters. One of the myths they looked at was the bus jumping over a gap in the road from the movie Speed. I am not looking at that myth, it has been discussed many times in many places. Rather, I am going to talk about scaling the motion. As typical with the MythBusters, they like to make a scaled down version of the event. It's cheaper that way. In this case, they made a 1/12th scale model of the bus and the road. The question was: how fast should the model go? The first question to ask is: what do…
The more I think about the last MythBusters' exploding water heater, the more cool things I see. How about I look at the energy of the explosion. There are three things I can look at: How much energy went into the water heater from the electric source? How much kinetic energy did the water heater have right after the explosion? How much thermal energy did the water and water heater have? How much gravitational potential energy did the heater have at it's highest point? Hopefully, I can show that the energy in from the electric source is greater or equal to kinetic plus thermal. Also, the…
This year's episode of Punkin Chunkin is coming up (I think tomorrow). Discovery just showed a teaser commercial with the specifications for one team's machine. If you are not familiar with Punkin Chunkin (World Championship Punkin Chunkin), the basic idea is to project some pumpkins. (note, if you waiting for the Discovery Channel show for the 2009 Punkin Chunkin, don't click on the previous link, it has the results already). One of the categories for Punkin Chunkin is the centrifugal machine. These are machines that spin pumpkins around really fast in circles to shoot them. They are…
Everyone knows, or should know how much I like MythBusters. Here is the problem. Below is a picture of Adam analyzing the motion of a an exploding water heater. Actually, I applaud Adam for his creative use of the vernier caliper. Really, it is an example of "making things work". However, in this case there is a very nice alternative - Tracker Video Analysis. So, here is what I am going to do. This will be a short tutorial on using Tracker. I will use the same video from the episode of the exploding water heater. The goal - how fast and how high did the water heater go. Or as the…
Not really. Here are the details (and some data) for the Millikan Oil Drop Experiment without the oil drop that I talked about previously (originally from The Physics Teacher - lucky you, it was a featured article so it should still be available (pdf)). The basic idea that Lowell McCann and Earl Blodgett from U of Wisconsin propose is to do an experiment similar to the oil drop experiment, but not so squinty (if you have done the oil drop experiment, you know what I mean). Instead of dropping charged oil in an electric field, they drop containers with metal nuts in water. The goal is to…
This is for commenter JimP. How do you take into account uncertainty when using video analysis? A great question. The first thing to think about is where does the uncertainty come from? My first guess would that it would be from the user. Where does the user click? Is it right on the object in each frame? Is the scale set correctly? I guess there could be other sources of error - maybe there are repeating frames that are a result of encoding. Maybe there is interlaced video frames. Well, what to do? I will just look at one motion in particular and do the analysis several times. I…
I already attacked the 2008 Punkin Chunkin Show. So, now I going to give the chunkers some tips. In case you aren't familiar, the Punkin Chunkin contest has teams create devices to launch a pumpkin. They have different categories, but I am going to focus on the air-powered devices. The basic idea is to make an over sized pneumatic potato gun. Here are the things I was inspired to think about. It seems all the canons were aimed at about the same angle. Did they guess at the angle? Or is this trial and error? What would be the best angle for a pumpkin launch? Does the optimal angle of…
Sometimes it is difficult to come up with new labs. Ideally, a lab should show use some of the basic physics principles as well as have something the students can measure. What to do with circular motion? I don't know how I forgot this, but here is a lab I used to do as an undergraduate student. I also like it because it doesn't really need fancy stuff like PASCO probes or anything. The basic idea is that a small mass is swung around in a circle with the tension in the string controlled by hanging a mass on the other end. Here, let me show you. Circular Motion Lab from Rhett Allain on…
My friend Konrad showed me this awesome toy he made. I know it doesn't make sense yet, so let me explain. Basically, you take this marble and roll it down the tray through the pegs. The pegs sort of randomize where the marble rolls through the hidden section. Inside the hidden section, it looks like this: The object of this toy is to find the cross-sectional area of the rings. Konrad said he built this based off of a toy he was given in middle school. He wasn't told how to do it, just to do it. Maybe I shouldn't say anymore about that toy except that it is awesome. No instructions,…