laser cooling
I have to admit, I'm writing this one up partly because it lets me use the title reference. It's a cool little paper, though, demonstrating the lengths that physicists will go to in pursuit of precision measurements.
I'm just going to pretend I didn't see that dorky post title, and ask what this is about. Well, it's about the trapping and laser cooling of thorium ions. They managed to load thorium ions into an ion trap, and use lasers to lower their temperature into the millikelvin range. At such low temperatures, the ions in the trap "crystallize."
So, they've demonstrated that if you get…
The third category in our look at lab apparatus, after vacuum hardware and lasers and optics is the huge collection of electronic gear that we use to control the experiments. I'll borrow the sales term "test and measurement" as a catch-all description, though this is really broader than what you'll usually find in that category.
This category covers all sorts of stuff, from power supplies to data acquisition equipment, but we'll start with the oscilloscopes.
The picture above shows two of the many oscilloscopes that rattle around my lab. These are used for almost everything that involves a…
Following on yesterday's discussion of the vacuum hardware needed for cooling atoms, let's talk about the other main component of the apparatus: the optical system. The primary technique used for making cold atoms is laser cooling, and I'm sure it will come as no surprise that this requires lasers, and where there are lasers, there must also be optics.
There are lots of different types of lasers used for laser cooling experiments, but they all need to have certain properties: tunability, stability, and adequate power. Tunability is important because laser cooling requires light at exactly…
Over in the reader request thread, Richard asks for experimental details:
I'd be interested in (probably a series) of posts on how people practically actually do cold atoms experiments because I don't really know.
I needed to take some new publicity photos of the lab anyway, so this is a good excuse to bust out some image-heavy posts-- lab porn, if you will. There are a lot of different components that go into making a cold-atom experiment, so we'll break this down by subsystems, starting with the most photogenic of them, the vacuum system:
(Click on that for a much bigger version.)
This…
Over at Unqualified Offerings, Thoreau proposes an an experimental test of Murphy's Law using the lottery. While amusing, it's ultimately flawed-- Murphy's Law is something of the form:
Anything that can go wrong, will.
Accordingly, it can only properly be applied to situations in which there is a reasonable expectation of success, unless something goes wrong. The odds of winning the lottery are sufficiently low that Murphy's Law doesn't come into play-- you have no reasonable expectation of picking the winning lottery numbers, so there's no need for anything to "go wrong" in order for you…
Voting has closed on the Laser Smackdown poll, with 772 people recording their opinion on the most amazing of the many things that have been done with lasers in the fifty years since the invention of the first working laser (see the Laserfest web site for more on the history and applications of lasers). The candidates in the traditional suspense-building reverse order:
Lunar laser ranging 22 votes
Cat toy/ dog toy/ laser light show 41 votes
Laser guide stars/ adaptive optics 46 votes
Holography 47 votes
Laser eye surgery 53 votes
Optical storage media (CD/DVD/Blu-Ray) 60 votes
Laser…
We're just over 600 votes in the Laser Smackdown poll in honor of the 50th anniversary of the laser, as of early Friday morning. I notice that it has moved off the front page of the blog, though, so here's another signal-boosting repost, just so we have as many votes as possible, to establish maximum scientific validity when we declare the winner the Most Amazing Laser Application of All Time
Which of the following is the most amazing application of a laser?Market Research
Voting will remain open until next Sunday, May 2, just two days from now, with the ultimate winner announced on Monday…
As of 1:45 Monday, 217 people have cast votes in the Laser Smackdown poll. That's not bad, but it's currently being handily beaten by the 271 people who have voted for a favorite system of units.
The nice thing about using actual poll services for this sort of thing, though, is that I can re-post the poll to boost signal a little. So, here it is again, a list of the twelve most amazing laser applications suggested by my wise and worldly readers, with links to short explanations of the pros and cons of each:
Which of the following is the most amazing application of a laser?Market Research…
What's the application? Using lasers to reduce the speed of a sample of atoms, thereby reducing their temperature to a tiny fraction of a degree above absolute zero.
What problem(s) is it the solution to? 1) "How can I make this sample of atoms move slowly enough to measure their properties very accurately?" 2) "How can I make this sample of atoms move slowly enough for their quantum wave-like character to become apparent?"
How does it work? I've written about laser cooling before, but the nickel version of the explanation is this: You can think of a beam of light as being made up of photons…