Synthetic Memory

One day, your iPod will be made out of biological flesh. Just kidding. In general, I'm a pretty staunch skeptic of The Singularity, but I've got to admit that experiments like this are pretty rad:

A team in Silver's HMS lab led by Caroline Ajo-Franklin, now at Lawrence Berkeley National Laboratory, and postdoctoral scientist David Drubin decided to demonstrate that not only could they construct circuits out of genetic material, but they could also develop mathematical models whose predictive abilities match those of any electrical engineering system.

"That's the litmus test," says Drubin, "namely, building a biological device that does precisely what you predicted it would do."

The components of this memory loop were simple: two genes that coded for proteins called transcription factors.

Transcription factors regulate gene activity. Like a hand on a faucet, the transcription factor will grab onto a specific gene and control how much, or how little, of a particular protein the gene should make. The researchers placed two of these newly synthesized, transcription factor-coding genes into a yeast cell, and then exposed the cell to galactose (a kind of sugar). The first gene, which was designed to switch on when exposed to galactose, created a transcription factor that grabbed on to, and thus activated, the second gene.

It was at this point that the feedback loop began.

The second gene also created a transcription factor. But this transcription factor, like a boomerang, swung back around and bound to that same gene from which it had originated, reactivating it. This caused the gene to once again create that very same transcription factor, which once again looped back and reactivated the gene.

In other words, the second gene continually switched itself on via the very transcription factor it created when it was switched on.

The researchers then eliminated the galactose, causing the first synthetic gene, the one that had initiated this whole process, to shut off. Even with this gene gone, the feedback loop continued.

"Essentially what happened is that the cell remembered that it had been exposed to galactose, and continued to pass this memory on to its descendents," says Ajo-Franklin. "So after many cell divisions, the feedback loop remained intact without galactose or any other sort of molecular trigger."

As cool as this experiment is, it's worth remembering just how rudimentary it is. The "memory" was really just a biochemical linger, an echo of galactose lingering on as a stuck transcription factor. (Obviously, every memory is just some sort of biochemical event, but what gives those chemical events their meaning is the larger neural network. There is no network here.) But it's still a pretty cool bit of biological engineering. Lord knows what kind of memory chips our kids will be playing with.


More like this

Cells permanently change their behavior in response to temporary changes to the environment, a kind of biological memory that controls processes as important and complex as how stem cells differentiate into specific tissues or how the immune system "remembers" dangerous pathogens. At its simplest,…
We do a pretty good job at appreciating the visible intricacies of nature: the antennae and legs and claws of a lobster, the geometrical order of the spots on a butterfly's wings. But a lot of nature's intricacies are hidden away inside single-celled creatures, such as the baker's yeast that makes…
In my previous comments about maternal effect genes, I was talking specifically about one Drosophila gene, bicoid, which we happen to understand fairly well. We know its sequence, we know how it is controlled, and we know what it does; we know where it falls in the upstream and downstream flow of…
As many of you may know, I have been examining how mRNAs are transported and localized within the cell and how the regulation of mRNA metabolism contributes to gene expression. From data accumulated recently within the "RNA Field", we know that transcription in eukaryotic cells is very sloppy -…