Teaching Synthetic Biology

I recently found this fascinating (relatively) old review article (open access) by awesome MIT professor Natalie Kuldell about teaching synthetic biology. Synthetic biology has integrated teaching and learning with the development of the field since basically the beginning of the field, with students contributing to new technologies through iGEM and academic lab-based courses. By actively participating in a new field students get a unique educational experience, and the field benefits through the work of students being trained as engineers and biologists:

Synthetic biology, with its inclusive content and uncertain outcome, can be used to educate the skilled and responsible thinkers we hope to produce. The newness of the terrain engages students as stakeholders who learn that their viewpoints matter and that their ideas are actionable. Teaching synthetic biology is hampered by the limited number of robust systems that can be converted to teaching materials and by the dearth of standardization and characterization in existing synthetic biology exemplars. Nonetheless, it's today's students who can contribute to the growth of the field and who will soon become practitioners poised to realize the positive outcomes for biology by design.

It's been exciting as a graduate student to be able to participate in the development and definition of a new field, and a lot of fun this summer working with undergrads as they learn about how to do molecular biology in the context of synthetic biology and genetic engineering. Things will change as the hundreds of students that learned how to do science and engineering through iGEM start going to grad school and teaching other people, as "interdisciplinary" gives way to a new discipline:

synthetic biology is a distinct discipline that requires its practitioners to work in ways remarkably different from the work that defines any traditional niche. Biologists who come to synthetic biology must manage complexity, rather than describe and celebrate it. Engineers must build using material under evolutionary pressures. Students who enter synthetic biology perceive the promise and limitations of the emerging discipline and because they have yet to categorize themselves as either "engineer" or "scientist," these students do not see the need to collaborate as much as they see the need to parse out the problems themselves and then systematically develop the skills to solve them.

"Authentic teaching and learning through synthetic biology." Journal of Biological Engineering, 2007.

More like this

I don't get nearly as many emails asking for advice as I'm sure the lovely and talented Dr. Isis does, and I'm not sure if my advice can compare in quality and sassiness to hers, but I want to address the questions I get most often--how do you get into synthetic biology if your background is in…
Inside Higher Ed is reporting that UT-Austin's Task Force on Curricular Reform has issued its report on the kind of first-year experience that might dop good things for the undergraduates (in terms of making general education more coherent and so forth). The faculty are commenting on the report.…
My semester in MIT's course on Documenting Science Through Video and New Media has drawn to a close. I've had a wonderful time and learned a lot about how films and science are constructed by different people in different times for different reasons. Most of all I've learned about how challenging…
I've been co-teaching a short class on synthetic biology this spring through the MIT High School Studies Program (HSSP). The program is awesome, I took classes through a similar MIT program as a nerdy middle schooler and have had a great time teaching the past few weeks (if you're in the Boston…