A Labelled-Line Code for Numbers in the Monkey PFC

How the brain codes numbers is a challenging problem. We know that certain parts of the brain must code numbers because they are involved in numerical calculation. Some of them -- such as the prefrontal cortex (PFC) -- are also involved in the calculation of reward, so it would be good if we knew how numerical rewards were encoded.

Neider and Merten address this issue of neural encoding of numbers in a recent paper in the Journal of Neuorscience.

In the paper, they trained monkeys to respond to different numbers of cues in a delayed response task while they were recording from their prefrontal cortex.

They list two possible ways in which the brain could code numbers.

The first called summation coding increases the number of neurons firing and their firing rate in proportion to the size of the number being encoded. In essence, summation coding encodes the magnitude of the number in the magnitude of the firing. This is depicted in the Figure (from the paper) as A.

The second is called labelled-line coding, depicted in the Figure as B. Labelled-line coding has a special set of neurons that respond to each separate number. The rate of firing does not matter as much as which neurons are firing.

i-db4cf24b38f4d7bc0a0ca7a9c230c318-labelledline.jpeg

When the authors examined the firing rates of many neurons during their task, they found that the second theory was the correct one. Neurons show what are called tuning curves for particular numbers of stimuli. A tuning curve is an increase of firing rate at a particular point on the axis of possible stimuli -- thus we say that neuron is tuned for that particular stimuli.

Here are some samples of neurons that are tuned for particular numbers. The x-axis shows the number of cues. The y-axis shows the firing rate. See how the firing rate peaks for each of these neurons at a different number. That indicates the number to which these neurons are tuned to fire.

i-672d251c93f0c827bd93d29c7b2603ea-tuning.jpeg

What is the significance of this work?

Well now we know that as a set, the neurons can encode all the numbers depending on which neurons are firing.

This has interesting implications to the mechanics of computation. For example, if each number is represented not as a magnitude but as an abstract entity, how does addition take place? Also, what does the brain do with particularly large numbers. Does it have neurons for them or do they blur together at the high end? (It mentions in the paper that 1 is over-represented, but this is probably because one stimulus can be interpreted as a variety of things besides just a number.)

Hat-tip: Faculty of 1000.

More like this

How do neurons in your brain encode the diversity of stimuli present in the world? This is one of the questions that neuroscientists have to answers about how the brain works. The world holds an infinite array of things to see, hear, touch, etc., yet your brain only has a finite number of neurons…
One of the problems brains must overcome to behave effectively is to discretely encode all the different responses that they can produce. Considering movement alone, you can move in a lot of different ways. Selecting which one is appropriate is troublesome in itself, but encoding all of them is a…
OUR ability to use and manipulate numbers is integral to everyday life - we use them to label, rank, count and measure almost everything we encounter. It was long thought that numerical competence is dependent on language and, therefore, that numerosity is restricted to our species. Although the…
In this clip from The Simpsons, Homer explains why he wouldn't benefit from an adult education course: "How is education supposed to make me feel smarter? Every time I learn something new, it pushes some old stuff out of my brain." As you watched the clip, multiple brain regions were…

For example, if each number is represented not as a magnitude but as an abstract entity, how does addition take place?

Well, I can think of at least two techniques, and I suspect humans at least use both of them. One would be visualization and internal combination (for small numbers), the other would be straight associative memory, just like the multiplication tables.

By David Harmon (not verified) on 05 Jun 2007 #permalink