atomic physics
In which we do a little ResearchBlogging, taking a look at a slightly confusing paper putting a new twist on the double-slit experiment.
------------
I'm off to California this afternoon, spending the rest of the week at DAMOP in Pasadena (not presenting this year, just hanging out to see the coolest new stuff in Atomic, Molecular, and Optical Physics). I don't want to leave the blog with just a cute-kid video for the whole week, though, so here's some had-core physics: a new paper in the Proceedings of the National Academy of Sciences (freely available online), looking at a new sort of…
The second in the DAMOP research categories I talked about is "Extreme Lasers," a name I was somewhat hesitant to use, as every time I see "Extreme [noun]," I get a flash of Stephen Colbert doing air guitar. It is, however, the appropriate term, because these laser systems push the limits of what's possible both in terms of the pulse duration (attosecond pulses are common, with 1as = 0.000000000000000001 s) and the pulse intensity (1014 W/cm2 is a typical order-of-magnitude, and some systems get much higher than that).
One of the main tricks for generating these ultra-short pulses is to do…
The first of the five categories of active research at DAMOP that I described in yesterday's post is "Ultracold Matter." The starting point for this category of research is laser cooling to get a gas of atoms down to microkelvin temperatures (that is, a few millionths of a degree above absolute zero. Evaporative cooling can then be used to bring the atoms down to nanokelvin temperatures, reaching the regime of "quantum degeneracy." This is, very roughly speaking, the point where the quantum wavelength of the atoms becomes comparable to the spacing between atoms in the gas, at which point the…
That's the title of my slightly insane talk at the DAMOP (Division of Atomic, Molecular, and Optical Physics of the American Physical Society) conference a couple of weeks ago, summarizing current topics of interest in Atomic, Molecular, and Optical Physics. I'll re-embed the slides at the end of this post, for anyone who missed my earlier discussion.
I put a ton of work into that talk, and had a huge amount of material that I didn't have time to include. I'd hate for that to go to waste, so I'm going to repurpose it for blog content over the next week or so. It'll probably be about a half-…
Most of what would ordinarily be blogging time this morning got used up writing a response to a question at thePhysics Stack Exchange. But having put all that effort in over there, I might as well put it to use here, too...
The question comes from a person who did a poster on terminology at the recently concluded American Geophysical Union meeting, offering the following definition of "data":
Values collected as part of a scientific investigation; may be qualified as 'science data'. This includes uncalibrated values (raw data), derived values (calibrated data), and other transformations of…
Last week, John Baez posted a report on a seminar by Dzimitry Matsukevich on ion trap quantum information issues. In the middle of this, he writes:
Once our molecular ions are cold, how can we get them into specific desired states? Use a mode locked pulsed laser to drive stimulated Raman transitions.
Huh? As far as I can tell, this means "blast our molecular ion with an extremely brief pulse of light: it can then absorb a photon and emit a photon of a different energy, while itself jumping to a state of higher or lower energy."
I saw this, and said "Hey, that's a good topic for a blog post…
Two papers in one post this time out. One of these was brought to my attention by Joerg Heber, the other I was reminded of when checking some information for last week's mathematical post on photons. They fit extremely well together though, and both relate to the photon correlation stuff I was talking about last week.
OK, what's the deal with these? These are two papers, one recent Optics Express paper from a week or so ago, the other a Nature article from a few years back. The Nature paper includes the graph you see at right, which is a really nice dataset demonstrating the Hanbury Brown and…
I'm a big fan of review articles. For those not in academic science, "review article" means a long (tens of pages) paper collecting together the important results of some field of science, and presenting an overview of the whole thing. These vary somewhat in just how specific they are-- some deal with both experiment and theory, others just theoretical approaches-- and some are more readable than others, but typically, they're written in a way that somebody from outside the field can understand.
These are a great boon to lazy authors, or authors facing tight page limits ("Ref. [1] and…
When one of the most recent issues of Physical Review Letters hit my inbox, I immediately flagged these two papers as something to write up for ResearchBlogging. This I looked at the accompanying viewpoint in Physics, and discovered that Chris Westbrook already did most of the work for me. And, as a bonus, you can get free PDF's of the two articles from the Physics link, in case you want to follow along at home.
Since I spent a little time thinking about these already, though, and because it connects to the question of electron spin that I talked about yesterday, I think it's still worth…
With the rumors of a Higgs Boson detected at Fermilab now getting the sort of official denial that in politics would mean the rumors were about to be confirmed in spectacular fashion, it's looking like we'll have to wait a little while longer before the next "Holy Grail" of physics gets discovered.
Strictly speaking, the only thing I recall being officially dubbed a "Holy Grail" that's been discovered was Bose-Einstein Condensation (BEC), first produced by eventual Nobelists Carl Wieman and Eric Cornell in 1995. Somebody, I think it was Keith Burnett of Oxford, was quoted in the media calling…
The big physics story at the moment is probably the new measurement of the size of the proton, which is reported in this Nature paper (which does not seem to be on the arxiv, alas). This is kind of a hybrid of nuclear and atomic physics, as it's a spectroscopic measurement of a quasi-atom involving an exotic particle produced in an accelerator. In a technical sense, it's a really impressive piece of work, and as a bonus, the result is surprising.
This is worth a little explanation, in the usual Q&A format.
So, what did they do to measure the size of a proton? Can you get rulers that small…