density

“I have announced this star as a comet, but since it is not accompanied by any nebulosity and, further, since its movement is so slow and rather uniform, it has occurred to me several times that it might be something better than a comet. But I have been careful not to advance this supposition to the public.” -Giuseppe Piazzi So it begins again: the neverending debate about who gets to be a planet and who doesn't. Everyone can bring their own interpretation of the science to the table -- and everyone has their own preferred naming scheme -- but when I think about the Solar System, I try to…
The oil spill is still in the news (sadly). One thing that keeps coming up is the speed that the oil bubbles rise to the surface. This is important in different oil-capture methods. The common statement is that smaller bubbles of oil can take quite a long time to reach the surface and larger bubbles can take about 2 days. This is one of those cases where things do not scale quite the same. Suppose there is a spherical oil bubble rising at a constant speed. Here is a force diagram for such a bubble: If this drop is going at a constant speed, then all these forces have to add up to the…
Of course I am talking about Arnold Schwarzenegger. After looking at how many bullets he carries in Commando, I remembered this scene (also from Commando) (warning: maybe some not great language and some killing. You have been warned) If you don't want to watch that clip, here is a shot (sorry for the quality). Clearly Arnold is strong, but there is more than strength involved here. Oh, don't bring your "he did it with wire stuff". I am not buying that. Also, I am talking about THE Arnold - he is real. I am not talking about the character in the movie (not real). Now for some physics…
Back to the discussion about hiding an electric motor in a pro racing cycle. Before, I looked at a video of Fabian Cancellara to see how his speed and acceleration compare to other bikers. The claim on the internet is that he pulls away so fast that he must have a motor hidden in his bike. Just to be completely clear, I don't think he is cheating. Then why bother? If you ask that then this must be the first time you reading this blog. I welcome you. No, but really, this is what scientists do. How hard would it be to cheat? From my analysis, it seems that a person could ride like he…
I am still thinking about the Red Bull Stratos Jump. Sorry, but there is just tons of great physics here. Next question - how big of a balloon would you need to get up to 120,000 feet? I am not going into the buoyancy details of Archimedes Principle - I think that was covered fairly thoroughly with the MythBusters floating lead balloon. However, in short, here is a force diagram for a floating balloon. For a floating balloon, the buoyancy force must equal the weight of the whole thing. It turns out that the buoyant force is equal to the weight of the gas (or fluid) the object displaces…
While I am still fresh on the Space Jump topic, let me take it to the extreme. Star Trek extreme. SPOILER ALERT But really, is this a spoiler alert if it is from the trailer of a movie that has been out forever? Of course, I talking about the latest Star Trek movie where three guys jump out of a shuttle and into the atmosphere. So, in light of the Red Bull Stratos jump, how would this jump compare? First, my assumptions: This Star Trek jump is on the planet Vulcan. I am going to assume this is just like Earth in terms of gravity and density of air. The jumpers in Star Trek have on stuff…
Crazy, but I was on CNN Saturday night. They contacted me at the last minute to talk about the Red Bull Stratos Jump. Here is a screen shot to show that I am not making this up (or that I have awesome photoshop skillz). Looking back, maybe I looked like an idiot. Really though, it wasn't my fault. I thought we were going to talk about physics. The first two questions threw me for a loop. Here are the two questions and my response (roughly paraphrased): Will Felix survive the jump? Answer: I guess so. Is there a scientific reason for this jump? Answer: I thought we were going to talk…
Grades are in. So, let me just say a couple of trends that I saw on the physical science final exam. Gravity on the moon I asked the question: "why is the gravitational force on an astronaut less on the moon than on Earth?" The simplest answer is that the gravitational field on the moon is smaller than on Earth (I would accept that answer). Why is this? It is because the moon as a much smaller mass even though it also has a smaller radius (that idea is rather complicated for this class - that gravitational force depends on both mass and radius). I would also take "the mass is smaller" as…
I gave the following question on my last physical science (physical science for non-science majors) test: Block A has a mass of 10 kg and volume of 100 cm3. Block B has a mass of 1 kg and a volume of 1 cm3. Which block has the greater density? Which block has the greater volume? The results of this question are interesting. Of the respondents, 33 answered both parts in a meaningful way. 8 of these 33 answered that the one with the greatest density had the greatest volume (that is 24%). Most of these 24% said that 1 cm3 was greater than 100 cm3. However, there were some that said the…
In this part of the world, we have oak trees. Technically they are called live oaks - but I don't get it. Of course they are alive. I was at a soccer game and this is the tree I always look at. Look how far those limbs extend horizontally. That branch is about 12 meters long. Why is this amazing? Have you ever tried to hold an 8 foot 2 x 4 board horizontally by holding one end? Pretty tough. How about I calculate the forces needed to hold that branch in place? I will do a simple model and then maybe later I can make it more complicated. Suppose I replace that limb with one straight…
This isn't much - really it is part of another post I am working on. The point of this post is to calculate the density of this piece of wood. Really, there is a reason for this. I saw this little stick (sticklette?) and noticed that it was very cylindrically shaped. So, what if I just pretend it is a cylinder to calculate the volume? This way I won't have to get it wet or anything (because I might need this stick later). First the mass Yes, there is some uncertainty in the mass - but it is small. I put the stick on balance and I will use a value of m = 28.9 g or 0.0289 kg. Volume The…
How does a suction cup work? It is all about the atmosphere. Here is a demo. Take some type of "suction cup" device. In this case, I used a toy dart. Stick it to something smooth and lift it up. Like this: What lifts up the metal block? The atmosphere. Diagram time: But this isn't a very realistic diagram. Actually, the suction cup would be pushing down on the block because the force from the atmosphere would be too large to balance with the weight. Let me put some numbers in here. Suppose this is an aluminum block - I just going to pretend it is 4cm on a side (and a cube). In…
I happened to catch two parts of two different episodes of Meteorite Men - a show about two guys that look for meteorites. In both of the snippets I saw, they were talking about a debris field for a meteor that breaks up. In these fields, the larger chunks of the meteorite are further down in the field. Why is this? Let me approach this first from a terminal velocity view. This requires a model for air resistance. I will use the following: Where: rho is the density of air A is the cross sectional area of the object C is a drag coefficient that depends on the shape of the object v is the…
You know I can't help but like Star Wars. Even with the new stuff, I watch it. Recently, I was watching the Clone Wars cartoon and noticed something odd about the way R2-D2 flies. I know what you are saying...."the odd thing is that he flies at all. Why didn't he fly in episodes 4-6?" Who knows. Here is the best image I could get of R2-D2 flying (from wookieepedia). What is wrong? Well, maybe you can't tell from the image I posted. Here is a diagram of flying R2-D2. If R2 (I can call him that because we are good friends) was flying like that, why would that be a problem? That would…
I saw this post about Panasonic's home battery. The claim is that this will lead a battery that can power a house for a week. I wonder if I can estimate how big this battery would be. First - to estimate the energy a house consumes. My first approximation is that you could probably run a house off of a 5000 Watt generator, but this probably isn't the average power use for a house. It is probably lower. I am going to go with an estimate of 2000 Watts as the average power over 1 day. How much energy would this be for 1 week? The article above claims that it is a lithium ion battery.…
On a previous episode of The MythBusters, Adam and Jamie made a lead balloon float. I was impressed. Anyway, I decided to give a more detailed explanation on how this happens. Using the thickness of foil they had, what is the smallest balloon that would float? If the one they created were filled all the way, how much could it lift? First, how does stuff float at all? There are many levels that this question could be answered. I could start with the nature of pressure, but maybe I will save that for another day. So, let me start with pressure. The reason a balloon floats is because the air…
So, analysis of the movie Up is pretty popular in the blogosphere. Figure I might as well surf the popularity wave. So, I have a couple more questions. The most important thing to estimate is the mass of the house. I am going to completely ignore the buoyancy of the house. I figure this will be insignificant next to the buoyancy needed. Anyway, let me go ahead and recap what has already been done on this in the blogosphere. Wired Science - How Pixar's Up House Could Really Fly - from that post: First, they calculated (seemingly correct) that the buoyancy of helium is 0.067 pounds per…
One of my students showed me this game, Fantastic Contraption. The basic idea is to use a couple of different "machine" parts to build something that will move an object into a target area. Not a bad game. But what do I do when I look at a game? I think - hey! I wonder what kind of physics this "world" uses. This is very similar to my analysis of the game Line Rider except completely different. Fantastic Contraption gives the unique opportunity to build whatever you want. This is great for creating "experiments" in this world. The first step is to "measure" some stuff. The game…
I haven't seen the Pixar Movie "Up" yet, so don't spoil it for me. I have, however, seen the trailer. In my usual fashion, I have to find something to complain about. There is this scene where the old man releases balloons out of the house. What is wrong with this scene? Also, would that be enough balloons to make the house float? Here is a shot of the balloons coming out of the house. Ok, I was already wrong. The first time I saw this trailer I thought the balloons were stored in his house. After re-watching in slow motion, it seems the balloons were maybe in the back yard held down…
There is this show "Weapon Masters" - I think it comes on the discovery channel. It is not a bad show. The basic idea is that they have this history guy talk about the historical aspect of some type of weapon and this other guy tries to make an improved version. Last night the goal was to recreate the original flame thrower mounted on a boat. They found a boat and they needed to test it's sea worthiness. The builder guy (sorry, I don't know his name) estimated that they would have 1000 lbs of equipment in the boat. To simulate this weight, they put 4 guys and two barrels of water in…