Why Spiders Aren't Insects III: Opportunity in the Wake of Mass Extinction

So far we have established that spiders are distinct from insects for two reasons: physiology (mouth parts, body plan, respiratory structures) and more importantly, evolutionary history (or phylogeny, as scientists call it).

But where did spider's come from? How did they come to speciate ?

The answer, like many in invertebrate paleontology, is cloudy. Organisms without hard, thick shells rarely become fossilized. In fact, for any organism's parts to become fossilized, even vertebrates, is a profound rarity, as Bill Bryson illustrates in A Short History of Nearly Everything:

Only about one bone in a billion, it is thought, ever becomes fossilized. If that is so, it means that the complete fossil legacy of all the Americans alive today - that's 270 million people with 206 bones each - will only be about fifty bones, one quarter of a complete skeleton.

Needless to say, invertebrate paleontologists are having a heck of a time piecing things together from such a paltry fossil record. But that doesn't mean there's no evidence.

According to morphological and geologic evidence, and therefore directly observable comparison, spiders and their brethren descended from the eurypterids, many of which were sea-going creatures. The eurypterids arose in the Ordovician, a period that began with the decimation of perhaps 60% of all marine life, and consequently ended with another more devastating cataclysm, which which some paleontologists rank as the second most destructive extinction event in the history of the world (by extinction of family). This has become known, quite appropriately, as the end-Ordovician event.

Mass extinctions make room for the evolution of unique characteristics as dictated by an organism's environment, and the environment changed drastically for the eurypterids at the end of the Ordovician. Glaciers began to creep down from the upper latitude, as the greenhouse gas carbon dioxide was depleted from the atmosphere, reducing the Earth's ability to trap the sun's heat energy. As the glaciers encroached, sea levels dropped and global temperatures cooled. This rapid progression decimated habitats, and destroyed a species' equilibrium with its environment.

But the end-Ordovician event was comprised of two parts: glaciation and then a period melting, an interglacial. Temperatures warmed once more, glaciers melted, flooding the land, and raising sea levels once more. The world had completely lost almost 50 percent of the families of life, but the ancestors of the spiders had survived. The Silurian period had begun, and new ecological niches were available for exploitation, a habitat opportunity that eventually would produce the spider.

That's about how it stands from a morphological perspective. But more recently scientists have been delving into molecular evidence and crafting very different explanations of not only the rise of the spider, but the vast diversification of arthropods in general.

Next time we'll address the new cladograms produce by this molecular evidence, and what ramifications it might have in interpreting the diaspora of the most abundant creatures on the planet.

*Interestingly enough, we are in the middle of an interglacial right now, the Holocene. Much like the success of the spider, our current interglacial, which began about 16,000 years ago, may have contributed to the ultimate "success" of Homo sapiens.

Resources:

Pechenik, J. A. (2000). Biology of the Invertebrates. : McGraw Hill Companies.

Gradstein, Felix, James Ogg, and Alan Smith, eds., 2004. A Geologic Time Scale 2004 (Cambridge University Press)

Baez, J. (2005). Temperature. Retrieved July 18, 2006, from http://www.math.ucr.edu/home/baez/temperature/

Webby, Barry D. and Mary L. Droser, eds., 2004. The Great Ordovician Biodiversification Event

University of Bristol. (2004). Fossil chelicerates and evolution. Retrieved July 18, 2006, from http://palaeo.gly.bris.ac.uk/Palaeofiles/Fossilgroups/Chelicerata/fossi…

More like this

In the last post of this series, we established that spiders descended from marine arthropods called the eurypterids, distinct and separate from insects, appearing in the fossil record in the late Silurian/early Devonian, about 425 million years ago. The cladogram we used to analyze the spider's…
I started this series of posts almost a year ago, incorporating some basics about taxonomy, evolution, and a little genetics while exploring my fascination with the Chelicerates. I'll be reposting the series, which is included in the Basic Concepts list, this week and next. Perhaps nothing will…
Last time we delved into some of the smallest components of spiders and insects, exploring their differences based on deviations in their genetic code through molecular homology. But there is one particular unifying element to these creatures and their overall make up. They share a series of genes…
So how is it that spiders are more closely related to horseshoe crabs - marine arthropods that haven't changed much in the past 250 million years - than to a more obvious choice, the insects? The answer to that question is more complex than you might think. Up until the middle of the 20th century,…

I'm not spider expert, but I found it interesting that the early spiders seem to most closely resemble the trap-door spiders of today (which, as far as I know, are considered the least derived of extant spiders).

And despite what Jurassic Park led some people to believe, it's exceedingly difficult to find insects in amber. I've been picking through peat from the Cretaceous that has plenty of amber in it (New Jersey has the best amber sites anywhere), but I have yet to come across any sign of arthropods. I found two iridescent wings in the peat yesterday and nearly had a heart-attack, but it turns out to be from a bee that somehow got into the sample.