Evolution of Growth Repression in Vascular Plants

Found this in ScienceDaily this morning:

A team of John Innes centre scientists lead by Professor Nick Harberd have discovered how plants evolved the ability to adapt to changes in climate and environment. Plants adapt their growth, including key steps in their life cycle such as germination and flowering, to take advantage of environmental conditions. They can also repress growth when their environment is not favourable. This involves many complex signalling pathways which are integrated by the plant growth hormone gibberellin.

Publishing in the journal Current Biology, the researchers looked at how plants evolved this ability by looking at the genes involved in the gibberellin signalling pathway in a wide range of plants. They discovered that it was not until the flowering plants evolved 300 million years ago that plants gained the ability to repress growth in response to environmental cues.

Neat study. One of my secret interests is the evolution of angiosperms, which is a baffling little problem for scientists to solve.

Too bad I'm instantly pulled out of reader mode with this article and passively don the editor cap:

Not until the evolution of the gymnosperms (flowering plants) 300 million years ago are these interacting proteins able to repress growth. This group of plants became the most dominant, and make up the majority of plant species we see today.

Well, it's clear that the researchers had little to do with the press release. Angiosperms are colloquially termed flowering plants. Gymnosperms are a group of vascular plants that includes the conifers, cycads and Ginkgo biloba.

Maybe I'll blog about the muddy waters that are angiosperm evolution sometime in the near future.

More like this

Abominable is not the sort of word that most people may associate with flowers, but for Darwin, it was a perfect fit. He saw life on Earth today as the result of millions of years of victories and defeats in the evolutionary arena. Flowering plants, by that reasoning, were among the greatest…
This week's phylogeny takes a look at the green portion of the eukaryotic tree. These are the eukaryotes capable of photosynthesis. Eukaryotes first obtained the ability to perform photosynthesis when a eukaryotic cell absorbed a photosynthetic cyanobacterium. This was followed by a few subsequent…
I've been writing a fair amount about early pattern formation in animals lately, so to do penance for my zoocentric bias, I thought I'd say a little bit about homeotic genes in plants. Homeotic genes are genes that, when mutated, can transform one body part into another—probably the best known…
There are 22 new articles in PLoS ONE today. As always, you should rate the articles, post notes and comments and send trackbacks when you blog about the papers. You can now also easily place articles on various social services (CiteULike, Connotea, Stumbleupon, Facebook and Digg) with just one…