Does seeing objects in a scene help us remember them? (Part 1)

ResearchBlogging.orgChange blindness is a truly remarkable phenomenon. There are so many ways that the human perceptual system can be tricked into missing a change that appears right before our eyes, that it's sometimes astonishing that we aren't constantly running into walls or misplacing the basics of life -- our car keys, wallet, our what were were planning on eating for dinner. If you've never seen a demonstration of change-blindness, I'd suggest checking out some of the posts we've written about it before (For example, here, here, and here).

So why don't we notice these sorts of changes? This video, based on experiments conducted by Andrew Hollingworth, can help us sort through some of the issues. You'll be shown a "scene" made out of Legos, and then the scene will disappear. When it returns, one item will by highlighted with an arrow. Next, that scene will be replaced with a slightly different version, where the highlighted object is changed in some way. Your task is to indicate which of the second two images is the same as the first image you saw:

If you're like most people, you won't find this task very difficult. Even though people tend not to notice these sorts of changes in a scene, when the object that changed is pointed out to them, they often are able to identify what changed. So what does make the problem more difficult? Hollingworth showed volunteers two versions of this type of video. In one version, an object was rotated or substituted with a similar object, just as above. But in another version, the entire scene except for the relevant object was removed, and again, viewers decided which object was the same as it was in the original scene. Here are the results:

i-15e5e01272dedfef330b30a00ede1b44-hollingworth1.gif

In every case, the viewers performed significantly better than chance. But when the original background of the scene was intact, viewers did better still, whether they were determining if an object was rotated or substituted with a similar object. It seems that the background of the scene is helping us in some way as we look for changes changes. But how?

One possibility is that the scene is retained in our short-term memory, helping us to spot changes in the object. To test this, Hollingworth repeated the study but interleaved the scenes and tests, so viewers saw a completely new scene before they were tested on an older one (i.e. Scene 1, Test 0, Scene 2, Test 1, Scene 3, Test 2, and so on). Previous studies have shown that this exceeds the limits of visual short-term memory, so Hollingworth was testing long-term memory. Here are the results:

i-444deb44d04eaf2d421feb16bcc29f7f-hollingworth2.gif

It's practically identical: Even for long-term visual memory, hen the background was removed from the image, memory for the object that changed was significantly worse. So seeing objects in the context of a scene improves both long- and short-term memory for the objects' identity and position.

It seems that the memory for the individual objects in a scene is somehow connected to the memory for the scene itself. Remove objects from that context, and it becomes significantly more difficult to remember the objects. Hollingworth designed a third experiment to try to uncover why the scene helps with memory. We'll discuss those results tomorrow.

Andrew Hollingworth (2006). Scene and Position Specificity in Visual Memory for Objects. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32 (1), 58-69 DOI: 10.1037/0278-7393.32.1.58

More like this

Yesterday's post showed that our memory for objects depends on the background information available when we first see the object: If you see a toy in a room, you remember it better later if you see it again in the room. Being in the same position in a blank picture of the room doesn't help. So what…
Last week, we presented research by Miranda Scolari's team about visual expertise and visual short-term memory. Their conclusion: "experts" don't have a larger visual memory capacity than non-experts, they just have the ability to process more details. Scolari's team was working under the…
Imagine yourself in a room surrounded by eleven objects arranged in a circle. You memorize the position of the objects, then you close your eyes, and rotate a third of the way around (120°). Keeping your eyes closed, can you point to the object that was behind you before? Most people can do this…
Clicking on the link below will bring up an image in a new window (you may need to disable pop-up blockers to do this). The picture contains five rows of asterisks. Your job is to count them as quickly as possible. Try using your finger to point and help keep track. View image Now try the same task…

maybe it has something to do with an object being on the ground?
i'm no scientist but the last posts i remember about this involved objects touching or part of the ground.
Maybe an instant change in a resting object seems improbable to the mind and is thus not noticed. personally, i didn't even notice the highlighted object existed before it was specified.