Wireless Cellular Communication

Cells are constantly jibber jabbering, sending messages to each other to coordinate behavior, both within a population of single-celled organisms or between cells of an individual multicellular organism. Most of these signals are chemicals that float around in the liquid that surrounds the cells but there recently has been an increased appreciation for cells' sense of "smell"--how cells respond to chemicals that are present as gasses.

A brand new paper outlines the discovery of "olfaction" in a species of bacteria, Bacillus licheniformis. Trying to save space on a 96 well dish by putting different experiments side by side, the researchers accidentally discovered that even though each experimental strain was separated in its own plastic well, bacteria growing closer to wells that were producing gaseous ammonia were forming more pigment and more vigorous biofilms. As olfaction can be defined at its simplest as responding in some way to volatile chemicals, these bacteria seem to display olfaction, although the details of how the ammonia to biofilm response occurs have not yet been explored.

i-6b1fc2bd39531e8e5d1f78853ebb0cd6-bacterialolfaction-thumb-510x406-55492-thumb-250x199-55493-thumb-510x405-55533.png

In higher organisms such as fungi, response to gasses has been better studied, allowing for the creation of genetic parts for synthetic biology that turn on in the presence of volatile acetaldehyde. When the DNA sequence responsible for sensing acetaldehyde from the fungus Aspergillus nidulans is engineered into cultured hamster cells, gene activation can be measured as a function of distance away from the source of acetaldehyde on a plate:

i-5de379e189236c3b8757388693ffbd60-airbornecommunication-thumb-510x341-55494.pngThe acetaldehyde-smelling part can be used to activate any gene that the researcher wants, including genes that are required for the cell's survival. Such a strain would require an acetaldehyde producing strain nearby in order to survive, creating a synthetic ecosystem that communicates through the air!

Being able to listen in to cellular conversations and understanding all the ways that organisms can sense and interact with their environment is amazing and incredibly powerful for the synthetic biology toolbox. Like natural ecosystems, synthetic biological systems made up of multiple engineered strains or even species can create ecosystems that together can do much more than any one species alone.

More like this

Synthetic biology is still a new field, and victories are small and incremental. Much of the promise and peril of synthetic biology still lies in the future: genetic devices made to order, computer aided genome design, organisms specially constructed for specific industrial purposes. Will we use…
In a recent conversation about the safety and ethics of synthetic biology in the wake of the announcement of the synthetic genome, many of the professors I was chatting with commented on how they hoped new synthetic biology technology would lead to bacteria that could eat the oil spilling into the…
Synthetic biology deliberately equates genetic networks to electronic circuits, cells to machines, organisms to factories. In synthetic biology, every living can be thought of as a cyborg, a living machine that can be manipulated, changed to meet our needs, parts swapped in and out like a computer…
So I was browsing the internet for info on G-protein coupled receptors and ended up finding some interesting facts about sperm. It turns out sperm don't just swim blindly, hoping to randomly bump into eggs. Instead, like bacteria, sperm can sense their chemical environment and adjust their swimming…

So there's not just WiFi, but also WiO (pronunciation pungently obvious)?

(Incidentally, I came across this reference to your German blog partner: http://tiny.cc/qdf1d)

By Plinthy the Middling (not verified) on 09 Sep 2010 #permalink