Wireless Cellular Communication

Cells are constantly jibber jabbering, sending messages to each other to coordinate behavior, both within a population of single-celled organisms or between cells of an individual multicellular organism. Most of these signals are chemicals that float around in the liquid that surrounds the cells but there recently has been an increased appreciation for cells' sense of "smell"--how cells respond to chemicals that are present as gasses.

A brand new paper outlines the discovery of "olfaction" in a species of bacteria, Bacillus licheniformis. Trying to save space on a 96 well dish by putting different experiments side by side, the researchers accidentally discovered that even though each experimental strain was separated in its own plastic well, bacteria growing closer to wells that were producing gaseous ammonia were forming more pigment and more vigorous biofilms. As olfaction can be defined at its simplest as responding in some way to volatile chemicals, these bacteria seem to display olfaction, although the details of how the ammonia to biofilm response occurs have not yet been explored.

i-6b1fc2bd39531e8e5d1f78853ebb0cd6-bacterialolfaction-thumb-510x406-55492-thumb-250x199-55493-thumb-510x405-55533.png

In higher organisms such as fungi, response to gasses has been better studied, allowing for the creation of genetic parts for synthetic biology that turn on in the presence of volatile acetaldehyde. When the DNA sequence responsible for sensing acetaldehyde from the fungus Aspergillus nidulans is engineered into cultured hamster cells, gene activation can be measured as a function of distance away from the source of acetaldehyde on a plate:

i-5de379e189236c3b8757388693ffbd60-airbornecommunication-thumb-510x341-55494.pngThe acetaldehyde-smelling part can be used to activate any gene that the researcher wants, including genes that are required for the cell's survival. Such a strain would require an acetaldehyde producing strain nearby in order to survive, creating a synthetic ecosystem that communicates through the air!

Being able to listen in to cellular conversations and understanding all the ways that organisms can sense and interact with their environment is amazing and incredibly powerful for the synthetic biology toolbox. Like natural ecosystems, synthetic biological systems made up of multiple engineered strains or even species can create ecosystems that together can do much more than any one species alone.

More like this

Like most fields, microbiology is one filled with jargon. Many laymen don't even realize the differences between a bacterium and a virus, much less the smaller differences between, for example, a pathogenic versus a commensal organism. So, while I haven't decided yet exactly what I might write…
If you work in infectious diseases in a hospital -- or frankly if you work anywhere in a hospital -- the emergence of antibiotic resistant bacteria is a serious problem. You have to be constantly aware of what the right drug is to prescribe to ensure its maximum effectiveness, and -- though rare…
My students are also blogging here: My undergrad encounters Developmental Biology Miles' Devo Blog Tavis Grorud’s Blog for Developmental Biology Thang’s Blog Heidi’s blog for Developmental Biology Chelsae blog Stacy’s Strange World of Developmental Biology Thoughts of…
In my last post, I wrote about how our genes work in networks, much like circuits made of elements wired together in various ways. As genes are accidentally duplicated, mutated, and rewired, old networks can give rise to new ones. It's pretty clear our ancestors could have never become particularly…

So there's not just WiFi, but also WiO (pronunciation pungently obvious)?

(Incidentally, I came across this reference to your German blog partner: http://tiny.cc/qdf1d)

By Plinthy the Middling (not verified) on 09 Sep 2010 #permalink