A little more tab clearance, here, this time a few recent stories dealing with those elusive little buggers, neutrinos. In roughly chronological order:< /p>
- The Daya Bay experiment in China has measured a key parameter for neutrino oscillation (arxiv paper), the phenomenon where neutrinos of one of the three observed types slowly evolve into one of the others. Mathematically, this is described as each of the three types we observe being an admixture of three more fundamental types. This mixing is described in terms of the sine of some "mixing angle," because physicists love geometry, and two of the three mixing angles had already been measured. The Daya Bay experiment measured the third-- or, more precisely, they found that the square of the sine of the third mixing angle is 0.092 +/- 0.016 +/- 0.005, where the two uncertainty values are for statistical and systematic uncertainties. This is somewhat larger than expected, which is probably a good thing, because it may imply more of a difference between matter and antimatter than you get from the simplest models, which in turn would help explain why everything we see in the universe is matter and not antimatter.
- A group at Fermilab has sent a message via neutrinos (press release), encoding a simple signal in on-off pulses of neutrinos generated at Fermilab and detected by a giant underground detector a kilometer away. This is not particularly useful for anything, because they need a big particle accelerator to make the pulses and a detector with a mass on the order of tons to detect them, but it's kind of cute.
- Finally, a second group at the Gran Sasso laboratory in Italy has used the same neutrino beam used by the OPERA collaboration to check the time of flight of the neutrinos passing from CERN to Italy, and find that it agrees perfectly with what you expect for neutrinos moving at light speed, not the tiny bit faster that OPERA saw. As usual with particle physics stuff, Matt Strassler has a good and balanced round-up. These results from the ICARUS experiment (I'm not even going to try to figure out what linguistic crimes they committed to get that acronym) are fairly conclusive evidence that OPERA's result was in error, though given the complexity of both measurements, it's still worth repeating the experiment as planned in May.
And that's the news regarding the elusive neutrino.
- Log in to post comments
More like this
"The saying 'It's not over 'til the fat lady sings' is erroneous, because women who are fat are never listened to." -Margaret Cho
Last year, the OPERA collaboration made worldwide headlines when they announced the results of a remarkable experiment.
Image credit: OPERA / CERN.
From over 730…
"If my theory of relativity is proven successful, Germany will claim me as a German and France will declare that I am a citizen of the world. Should my theory prove untrue, France will say that I am a German and Germany will declare that I am a Jew." -Albert Einstein
One of the most famous…
This guest post is by Brookhaven Lab physicist Steve Kettell, the Chief Scientist for the U.S. Daya Bay Neutrino Project in southern China. Kettell received his Ph.D. in 1990 from Yale University and is the leader of Brookhaven's Electronic Detector Group.
Steve Kettell
Neutrinos are downright…
Q: "Why don't physicists shield themselves from neutrinos?"
A: "Because they never see them coming." #neutrinojokes
Over the past two months, we've talked more about neutrinos than ever before thanks to an extraordinary claim that neutrinos have been observed to move faster-than-light!
And as you…
And don't forget that the T2K experiment is taking data again, almost exactly a year after the 9.0 earthquake broke its beamline.
Your arXiv link for the Stancil et al. paper is incomplete. The URL should be http://arxiv.org/abs/1203.2847