Light, up to 11

Whew! Back from a very successful wedding and honeymoon, moving into a new apartment, writing thank-you notes, and all the fun jazz that comes with being newly married.

i-58097e641e7b4d2e679d8e0b1f7677b9-candle.png

But hey, we've got to get this blog cranking again at some point, and now's as good a time as any. We'll kick things back off with a letter from a reader,

Scott writes in with a question:

If you have a cubic meter of nothing but highly condensed photons, what would the upper limit on its energy density be? (If there is even a limit.)

Classically there's no theoretical limit on the field strength, though radiation pressure will eventually be too large for any physical box to contain. It would be an entertaining calculation to look at the stress-strain curves of something like solid steel to see just how much light we might be able to stuff into a magic 100% reflective box before we broke the yield strength.

But the physical reality in which we live is not an entirely classical one, and Scott's question in fact presupposes that we're dealing with the full quantized description of photons of light. Quantum Electrodynamics (QED for short) is a tricky subject that I'm actually in the midst of learning formally as part of the required Standard Model class. We don't need to actually do hard-core QED to answer the question though, an order-of magnitude estimate will work fine.

It'll turn out that if you stuff enough energy into the vacuum you'll eventually start creating matter (electron/positron pairs in this type of circumstance) via Einstein's famous E = mc^2 relationship. In nuclear weapons we're used to seeing the m turn into E very dramatically, but of course the other direction works just as well. Get enough E and you'll start making m.

We might estimate that if we let m be the mass of the electron, that if we stuff E = mc^2 worth of electromagnetic energy into one Compton wavelength of the electron that we might have a good estimate for the maximum amount of energy we can fit into a given volume before we start pair production and therefore don't have (just) a box full of light anymore.

The Compton wavelength of the electron is:

i-d4bb9fe09d6b78eb832985821d8a307f-1.png

Which works out to be about 3.96e-13 meters. We might take the cube of this to get the "Compton volume" of the electron, which is about 5.76e-38 cubic meters. The E=mc^2 energy of the electron works out to be about 8.19e-14 joules, so the total energy density of works out to be, drumroll...

1.4e24 joules/meter^3.

Which is pretty hefty. We're talking "giant asteroid impact per cubic meter" hefty. But how does that compare to the light intensity we can generate with current laser technology?

Well, we've calculated an energy density, not an intensity. Intensity is watts per square meter - or if you prefer, power per area. We calculated energy per volume. So we have to do a bit of unit conversion. If we imagine that we turn on a flashlight for 1 second, we've created a column of light with a length of about 186,000 miles containing a total energy equal to the power of the flashlight times 1 second. The relationship between energy density and intensity is thus (E/V)*c = I, where I is the intensity, watts per meter^2. Which is good because the units work out. It comes out to be something like 4.2e32 watts per square meter, or about 4.2e28 W/cm^2.

Right now our best lasers are generally in the 10^20 W/cm^2 range, so we have a ways to go before we can start stuffing boxes to their limits with photons.

Still, when you're observing interactions between light fields and electrons that are already moving relativistically fast you can actually get these wacky QED effects at reachable intensities. Chad wrote a bit about this a while back, in fact.

Will we ever get to the point when we just can't make our lasers any more intense without turning them into particle beams? Well, I'm not holding my breath. But it would be cool.

What the heck, one more picture from the reception:

i-d321fe5aec7ba3e4305da2df40762044-walk.png

More like this

ScienceBlogs' own Chad Orzel has on a number of occasions discussed the photon concept in relation to physics pedagogy. He thinks (as I do) that it's a good concept to teach early even though formally speaking photons are considerably more complicated than the "particle of light" idea that's often…
It's a pretty nice time for quantum optics and laser physics at Texas A&M, with us moving into a brand new lab and acquiring several new laser systems. One of the systems we're moving isn't new (we've had it for a few years, and the technology is considerably older), but we're about to put it…
If you take a flashlight and shine it at a wall or through a prism or do pretty much anything with the light, you'll find that the effects of the light change in direct proportion to the amount of light the flashlight's putting out. Twice the light, twice the reflection from the wall. Twice the…
All right, I'm gonna delay the next installment of the quantum bouncing ball for a brief diversion. I have a friend who's also a physics grad student, and he suggested that we along with a few other fellow students form a yet-to-be-named unofficial club whose raison d'etre is to get together every…

it is very good to find you again here. i speculating that you may not come so quickly. but you are very professional. you are looking very smart and handsome in the above picture. god was very kind on you , he given you both look and mind.

now i come into right track ,i have a very silly doubt, how can you confine a photon into a box? as far as i know, no sooner photon creates it moves with the very high speed. i have another doubt, suppose there is nothing but a single photon or single electron in the universe that is to say a isolated photon then what will be the behaviour of photon ? will it be in rest or will it move with 1,86000 mile per sec?

A 1 gigatesla field has 4x10^24 J/m^3, E/c^2 mass density 1000 times that of lead. Don't drop the bottle - same EOS as Ideal Gas.

Real photons are inconvenient for not staying put. Separated charge is a pain in the patootie for sparking: ionizing a gas fill, cold emission from surfaces, and atomic nuclei with Z greater than 137 (to first order. Rather more than that with QED corrections). The choice way to put ten pounds of photons in a five pound vacuum bag is magnetic field.

Magnetars pull ~10 gigateslas and above - more than enough to foment intense vacuum birefringence and spontaneous pair formation,

http://www.optcorp.com/edu/articleDetailEDU.aspx?aid=1637
observation
http://www.cita.utoronto.ca/~shaviv/research/Polarization.html
theory

The hard work is done. All one need do is look.

Congratulations on becoming married!

The steel box problem depends on the thickness of the steel, of course. But if you assume the thickness is proportionate to the diameter, the maximum pressure you can contain is approximately equal to the tensile strength of the steel. Say 40,000 psi.

Light carries momentum proportional to its energy. So it doesn't matter what frequency light you use, the maximum energy for 40,000 psi will be the same. I'll leave it to you to work ou the details.

I'm looking at going to grad school next fall and I'm thinking that my primary objective will be UT Austin. I take the Physics GREs in two weeks.

By Carl Brannen (not verified) on 24 Sep 2010 #permalink

what if several dozen lasers were focused into a single beam?
would that increase the power?

By Anonymous (not verified) on 24 Sep 2010 #permalink

I'm still convinced that Uncle Al is some sort of spam-bot that spits out pseudo-coherent text related to the post on which it is commenting. I mean seriously, what the hell sort of sentence structure is that? It's certainly not a human.

@ #6 -- don't cross the beams.....

By complex field (not verified) on 26 Sep 2010 #permalink