New and Exciting in PLoS ONE

There are 28 new articles up on PLoS ONE today. As always, I offer you my own picks, but you go there and look at all of them, then read, rate, comment and annotate:

Living with the Past: Nutritional Stress in Juvenile Males Has Immediate Effects on their Plumage Ornaments and on Adult Attractiveness in Zebra Finches:

The environmental conditions individuals experience during early development are well known to have fundamental effects on a variety of fitness-relevant traits. Although it is evident that the earliest developmental stages have large effects on fitness, other developmental stages, such as the period when secondary sexual characters develop, might also exert a profound effect on fitness components. Here we show experimentally in male zebra finches, Taeniopygia guttata, that nutritional conditions during this later period have immediate effects on male plumage ornaments and on their attractiveness as adults. Males that had received high quality food during the second month of life, a period when secondary sexual characteristics develop, were significantly more attractive as adults in mate choice tests than siblings supplied with standard food during this period. Preferred males that had experienced better nutritional conditions had larger orange cheek patches when nutritional treatments ended than did unpreferred males. Sexual plumage ornaments of young males thus are honest indicators of nutritional conditions during this period. The mate choice tests with adult birds indicate that nutritional conditions during the period of song learning, brain and gonad development, and moult into adult plumage have persisting effects on male attractiveness. This suggests that the developmental period following nutritional dependence from the parents is just as important in affecting adult attractiveness as are much earlier developmental periods. These findings thus contribute to understanding the origin and consequences of environmentally determined fitness components.

More under the fold....

Accelerated FoxP2 Evolution in Echolocating Bats:

FOXP2 is a transcription factor implicated in the development and neural control of orofacial coordination, particularly with respect to vocalisation. Observations that orthologues show almost no variation across vertebrates yet differ by two amino acids between humans and chimpanzees have led to speculation that recent evolutionary changes might relate to the emergence of language. Echolocating bats face especially challenging sensorimotor demands, using vocal signals for orientation and often for prey capture. To determine whether mutations in the FoxP2 gene could be associated with echolocation, we sequenced FoxP2 from echolocating and non-echolocating bats as well as a range of other mammal species. We found that contrary to previous reports, FoxP2 is not highly conserved across all nonhuman mammals but is extremely diverse in echolocating bats. We detected divergent selection (a change in selective pressure) at FoxP2 between bats with contrasting sonar systems, suggesting the intriguing possibility of a role for FoxP2 in the evolution and development of echolocation. We speculate that observed accelerated evolution of FoxP2 in bats supports a previously proposed function in sensorimotor coordination.

Only Half Right: Species with Female-Biased Sexual Size Dimorphism Consistently Break Rensch's Rule:

Most animal species display Sexual Size Dimorphism (SSD): males and females consistently attain different sizes, most frequently with females being larger than males. However the selective mechanisms driving patterns of SSD remain controversial. 'Rensch's rule' proposes a general scaling phenomenon for all taxa, whereby SSD increases with average body size when males are larger than females, and decreases with body size when females are larger than males. Rensch's rule appears to be general in the former case, but there is little evidence for the rule when females are larger then males.

Using comprehensive data for 1291 species of birds across 30 families, we find strong support for Rensch's rule in families where males are typically larger than females, but no overall support for the rule in families with female-biased SSD. Reviewing previous studies of a broad range of taxa (arthropods, reptiles, fish and birds) showing predominantly female-biased SSD, we conclude that Rensch's conjecture is the exception rather than the rule in such species.

The absence of consistent scaling of SSD in taxa with female-biased SSD, the most prevalent direction of dimorphism, calls into question previous general evolutionary explanations for Rensch's rule. We propose that, unlike several other ecological scaling relationships, Rensch's rule does not exist as an independent scaling phenomenon.

Immunological Change in a Parasite-Impoverished Environment: Divergent Signals from Four Island Taxa:

Dramatic declines of native Hawaiian avifauna due to the human-mediated emergence of avian malaria and pox prompted an examination of whether island taxa share a common altered immunological signature, potentially driven by reduced genetic diversity and reduced exposure to parasites. We tested this hypothesis by characterizing parasite prevalence, genetic diversity and three measures of immune response in two recently-introduced species (Neochmia temporalis and Zosterops lateralis) and two island endemics (Acrocephalus aequinoctialis and A. rimitarae) and then comparing the results to those observed in closely-related mainland counterparts. The prevalence of blood parasites was significantly lower in 3 of 4 island taxa, due in part to the absence of certain parasite lineages represented in mainland populations. Indices of genetic diversity were unchanged in the island population of N. temporalis; however, allelic richness was significantly lower in the island population of Z. lateralis while both allelic richness and heterozygosity were significantly reduced in the two island-endemic species examined. Although parasite prevalence and genetic diversity generally conformed to expectations for an island system, we did not find evidence for a pattern of uniformly altered immune responses in island taxa, even amongst endemic taxa with the longest residence times. The island population of Z. lateralis exhibited a significantly reduced inflammatory cell-mediated response while levels of natural antibodies remained unchanged for this and the other recently introduced island taxon. In contrast, the island endemic A. rimitarae exhibited a significantly increased inflammatory response as well as higher levels of natural antibodies and complement. These measures were unchanged or lower in A. aequinoctialis. We suggest that small differences in the pathogenic landscape and the stochastic history of mutation and genetic drift are likely to be important in shaping the unique immunological profiles of small isolated populations. Consequently, predicting the impact of introduced disease on the many other endemic faunas of the remote Pacific will remain a challenge.

DNA Methylation in the Human Cerebral Cortex Is Dynamically Regulated throughout the Life Span and Involves Differentiated Neurons:

The role of DNA cytosine methylation, an epigenetic regulator of chromatin structure and function, during normal and pathological brain development and aging remains unclear. Here, we examined by MethyLight PCR the DNA methylation status at 50 loci, encompassing primarily 5â² CpG islands of genes related to CNS growth and development, in temporal neocortex of 125 subjects ranging in age from 17 weeks of gestation to 104 years old. Two psychiatric disease cohorts--defined by chronic neurodegeneration (Alzheimer's) or lack thereof (schizophrenia)--were included. A robust and progressive rise in DNA methylation levels across the lifespan was observed for 8/50 loci (GABRA2, GAD1, HOXA1, NEUROD1, NEUROD2, PGR, STK11, SYK) typically in conjunction with declining levels of the corresponding mRNAs. Another 16 loci were defined by a sharp rise in DNA methylation levels within the first few months or years after birth. Disease-associated changes were limited to 2/50 loci in the Alzheimer's cohort, which appeared to reflect an acceleration of the age-related change in normal brain. Additionally, methylation studies on sorted nuclei provided evidence for bidirectional methylation events in cortical neurons during the transition from childhood to advanced age, as reflected by significant increases at 3, and a decrease at 1 of 10 loci. Furthermore, the DNMT3a de novo DNA methyl-transferase was expressed across all ages, including a subset of neurons residing in layers III and V of the mature cortex. Therefore, DNA methylation is dynamically regulated in the human cerebral cortex throughout the lifespan, involves differentiated neurons, and affects a substantial portion of genes predominantly by an age-related increase.

Metagenomics of the Deep Mediterranean, a Warm Bathypelagic Habitat:

Metagenomics is emerging as a powerful method to study the function and physiology of the unexplored microbial biosphere, and is causing us to re-evaluate basic precepts of microbial ecology and evolution. Most marine metagenomic analyses have been nearly exclusively devoted to photic waters.

We constructed a metagenomic fosmid library from 3,000 m-deep Mediterranean plankton, which is much warmer (~14°C) than waters of similar depth in open oceans (~2°C). We analyzed the library both by phylogenetic screening based on 16S rRNA gene amplification from clone pools and by sequencing both insert extremities of ca. 5,000 fosmids. Genome recruitment strategies showed that the majority of high scoring pairs corresponded to genomes from Rhizobiales within the Alphaproteobacteria, Cenarchaeum symbiosum, Planctomycetes, Acidobacteria, Chloroflexi and Gammaproteobacteria. We have found a community structure similar to that found in the aphotic zone of the Pacific. However, the similarities were significantly higher to the mesopelagic (500-700 m deep) in the Pacific than to the single 4000 m deep sample studied at this location. Metabolic genes were mostly related to catabolism, transport and degradation of complex organic molecules, in agreement with a prevalent heterotrophic lifestyle for deep-sea microbes. However, we observed a high percentage of genes encoding dehydrogenases and, among them, cox genes, suggesting that aerobic carbon monoxide oxidation may be important in the deep ocean as an additional energy source.

The comparison of metagenomic libraries from the deep Mediterranean and the Pacific ALOHA water column showed that bathypelagic Mediterranean communities resemble more mesopelagic communities in the Pacific, and suggests that, in the absence of light, temperature is a major stratifying factor in the oceanic water column, overriding pressure at least over 4000 m deep. Several chemolithotrophic metabolic pathways could supplement organic matter degradation in this most depleted habitat.

Categories

More like this

Update: Greg Laden has a post worth reading on tis topic. Sexual selection is an expansive topic. It is also one with a complicated history and fits messily into a rigorous empirical research program. I will base this post predominantly on the verbal exposition in R.A. Fisher's The Genetical…
Simpler mode of inheritance of transcriptional variation in male Drosophila melanogaster: Sexual selection drives faster evolution in males. The X chromosome is potentially an important target for sexual selection, because hemizygosity in males permits accumulation of alleles, causing tradeoffs in…
My little laptop is functional again, so at least I'll be able to blog these Sunday morning IGERT sessions in real-time. I still have to transcribe my notes from yesterday; I'll plan on getting that done on the plane this afternoon. Kristi Montooth: Mitochondrial-nuclear epistasis for metabolic…
tags: evolutionary biology, mate choice, sex determination, genetic compatibility, behavioral ecology, Gouldian Finch, Erythrura gouldiae, peer-reviewed paper The three color morphs of Gouldian finches, Erythrura gouldiae. Image: Sarah Pryke, Macquarie University. Gouldian finches, Erythrura…