New and Exciting in PLoS ONE

Steve Irwin's last paper is not the only exciting article to appear on PLoS ONE today - there are 40 more, and here are a few I am excited about - a veritable embarassment of riches! When am I ever going to find time to read them all!

Oxytocin in the Circadian Timing of Birth (hey, it's by Erik Herzog, so you know I'll blog about this paper in a separate post later):

Very little is known about the molecular components that determine the timing for birth in mammals. This study compares the timing of births between mice with and without the chemical oxytocin (OT) when exposed to shifts in the light cycle. The results show that OT-deficient mice give birth at random times throughout the light cycle, while mice with OT maintain a normal clustered birth profile, thus suggesting that oxytocin is necessary in the timing of birth.

A Visual Pathway Links Brain Structures Active during Magnetic Compass Orientation in Migratory Birds:

The magnetic compass of migratory birds has been suggested to be light-dependent. Retinal cryptochrome-expressing neurons and a forebrain region, "Cluster N", show high neuronal activity when night-migratory songbirds perform magnetic compass orientation. By combining neuronal tracing with behavioral experiments leading to sensory-driven gene expression of the neuronal activity marker ZENK during magnetic compass orientation, we demonstrate a functional neuronal connection between the retinal neurons and Cluster N via the visual thalamus. Thus, the two areas of the central nervous system being most active during magnetic compass orientation are part of an ascending visual processing stream, the thalamofugal pathway. Furthermore, Cluster N seems to be a specialized part of the visual wulst. These findings strongly support the hypothesis that migratory birds use their visual system to perceive the reference compass direction of the geomagnetic field and that migratory birds "see" the reference compass direction provided by the geomagnetic field.

Do Individual Females Differ Intrinsically in Their Propensity to Engage in Extra-Pair Copulations?:

While many studies have investigated the occurrence of extra-pair paternity in wild populations of birds, we still know surprisingly little about whether individual females differ intrinsically in their principal readiness to copulate, and to what extent this readiness is affected by male attractiveness.

To address this question I used captive zebra finches (Taeniopygia guttata) as a model system. I first measured female readiness to copulate when courted by a male for the first time in life. Second, I conducted choice-chamber experiments to assess the mating preferences of individual females prior to pair formation. I then paired females socially with a non-desired mate and once they had formed a stable pair bond, I observed the inclination of these females to engage in extra-pair copulations with various males. Females showing a high readiness to copulate when courted by a male for the first time in life were much more likely to engage in extra-pair copulations later in life than others. Male attractiveness, as measured in choice tests, was a useful predictor of whether females engaged in extra-pair copulations with these males, but, surprisingly, the attractiveness of a female's social partner had no effect on her fidelity. However, it remained unclear what made some males more attractive than others. Contrary to a widespread but rarely tested hypothesis, females did not preferentially copulate with males having a redder beak or singing at a higher rate. Rather it seemed that song rate was a confounding factor in choice-chamber experiments: song attracted the female's attention but did not increase the male's attractiveness as a copulation partner.

Intrinsic variation in female readiness to copulate as well as variation in the attractiveness of the extra-pair male but not the social partner decided the outcome of extra-pair encounters.

Evolution of Female Preference for Younger Males:

Previous theoretical work has suggested that females should prefer to mate with older males, as older males should have higher fitness than the average fitness of the cohort into which they were born. However, studies in humans and model organisms have shown that as males age, they accumulate deleterious mutations in their germ-line at an ever-increasing rate, thereby reducing the quality of genes passed on to the next generation. Thus, older males may produce relatively poor-quality offspring. To better understand how male age influences female mate preference and offspring quality, we used a genetic algorithm model to study the effect of age-related increases in male genetic load on female mate preference. When we incorporate age-related increases in mutation load in males into our model, we find that females evolve a preference for younger males. Females in this model could determine a male's age, but not his inherited genotype nor his mutation load. Nevertheless, females evolved age-preferences that led them to mate with males that had low mutation loads, but showed no preference for males with respect to their somatic quality. These results suggest that germ-line quality, rather than somatic quality, should be the focus of female preference in good genes models.

Causal Inference in Multisensory Perception:

Perceptual events derive their significance to an animal from their meaning about the world, that is from the information they carry about their causes. The brain should thus be able to efficiently infer the causes underlying our sensory events. Here we use multisensory cue combination to study causal inference in perception. We formulate an ideal-observer model that infers whether two sensory cues originate from the same location and that also estimates their location(s). This model accurately predicts the nonlinear integration of cues by human subjects in two auditory-visual localization tasks. The results show that indeed humans can efficiently infer the causal structure as well as the location of causes. By combining insights from the study of causal inference with the ideal-observer approach to sensory cue combination, we show that the capacity to infer causal structure is not limited to conscious, high-level cognition; it is also performed continually and effortlessly in perception.

Antagonistic Bacterial Interactions Help Shape Host-Symbiont Dynamics within the Fungus-Growing Ant-Microbe Mutualism:

Conflict within mutually beneficial associations is predicted to destabilize relationships, and theoretical and empirical work exploring this has provided significant insight into the dynamics of cooperative interactions. Within mutualistic associations, the expression and regulation of conflict is likely more complex than in intraspecific cooperative relationship, because of the potential presence of: i) multiple genotypes of microbial species associated with individual hosts, ii) multiple species of symbiotic lineages forming cooperative partner pairings, and iii) additional symbiont lineages. Here we explore complexity of conflict expression within the ancient and coevolved mutualistic association between attine ants, their fungal cultivar, and actinomycetous bacteria (Pseudonocardia). Specifically, we examine conflict between the ants and their Pseudonocardia symbionts maintained to derive antibiotics against parasitic microfungi (Escovopsis) infecting the ants' fungus garden. Symbiont assays pairing isolates of Pseudonocardia spp. associated with fungus-growing ants spanning the phylogenetic diversity of the mutualism revealed that antagonism between strains is common. In contrast, antagonism was substantially less common between more closely related bacteria associated with Acromyrmex leaf-cutting ants. In both experiments, the observed variation in antagonism across pairings was primarily due to the inhibitory capabilities and susceptibility of individual strains, but also the phylogenetic relationships between the ant host of the symbionts, as well as the pair-wise genetic distances between strains. The presence of antagonism throughout the phylogenetic diversity of Pseudonocardia symbionts indicates that these reactions likely have shaped the symbiosis from its origin. Antagonism is expected to prevent novel strains from invading colonies, enforcing single-strain rearing within individual ant colonies. While this may align ant-actinomycete interests in the bipartite association, the presence of single strains of Pseudonocardia within colonies may not be in the best interest of the ants, because increasing the diversity of bacteria, and thereby antibiotic diversity, would help the ant-fungus mutualism deal with the specialized parasites.

Do Haematophagous Bugs Assess Skin Surface Temperature to Detect Blood Vessels?:

It is known that some blood-sucking insects have the ability to reach vessels under the host skin with their mouthparts to feed blood from inside them. However, the process by which they locate these vessels remains largely unknown. Less than 5% of the skin is occupied by blood vessels and thus, it is not likely that insects rely on a "random search strategy", since it would increase the probability of being killed by their hosts. Indeed, heterogeneities along the skin surface might offer exploitable information for guiding insect's bites.

We tested whether the bug Rhodnius prolixus can evaluate temperature discontinuities along the body surface in order to locate vessels before piercing the host skin. When placed over a rabbit ear, the bug's first bites were mostly directed towards the main vessels. When insects were confronted to artificial linear heat sources presenting a temperature gradient against the background, most bites were directly addressed to the warmer linear source, notwithstanding the temperature of both, the source and the background. Finally, tests performed using uni- and bilaterally antennectomized insects revealed that the bilateral integration of thermal inputs from both antennae is necessary for precisely directing bites.

R. prolixus may be able to exploit the temperature differences observed over the skin surface to locate blood vessles. Bugs bite the warmest targets regardless of the target/background temperatures, suggesting that they do not bite choosing a preferred temperature, but select temperature discontinuities along the skin. This strategy seems to be an efficient one for finding blood vessels within a wide temperature range, allowing finding them on different hosts, as well as on different areas of the host body. Our study also adds new insight about the use of antennal thermal inputs by blood sucking bugs.

Deinococcus geothermalis: The Pool of Extreme Radiation Resistance Genes Shrinks:

Bacteria of the genus Deinococcus are extremely resistant to ionizing radiation (IR), ultraviolet light (UV) and desiccation. The mesophile Deinococcus radiodurans was the first member of this group whose genome was completely sequenced. Analysis of the genome sequence of D. radiodurans, however, failed to identify unique DNA repair systems. To further delineate the genes underlying the resistance phenotypes, we report the whole-genome sequence of a second Deinococcus species, the thermophile Deinococcus geothermalis, which at its optimal growth temperature is as resistant to IR, UV and desiccation as D. radiodurans, and a comparative analysis of the two Deinococcus genomes. Many D. radiodurans genes previously implicated in resistance, but for which no sensitive phenotype was observed upon disruption, are absent in D. geothermalis. In contrast, most D. radiodurans genes whose mutants displayed a radiation-sensitive phenotype in D. radiodurans are conserved in D. geothermalis. Supporting the existence of a Deinococcus radiation response regulon, a common palindromic DNA motif was identified in a conserved set of genes associated with resistance, and a dedicated transcriptional regulator was predicted. We present the case that these two species evolved essentially the same diverse set of gene families, and that the extreme stress-resistance phenotypes of the Deinococcus lineage emerged progressively by amassing cell-cleaning systems from different sources, but not by acquisition of novel DNA repair systems. Our reconstruction of the genomic evolution of the Deinococcus-Thermus phylum indicates that the corresponding set of enzymes proliferated mainly in the common ancestor of Deinococcus. Results of the comparative analysis weaken the arguments for a role of higher-order chromosome alignment structures in resistance; more clearly define and substantially revise downward the number of uncharacterized genes that might participate in DNA repair and contribute to resistance; and strengthen the case for a role in survival of systems involved in manganese and iron homeostasis.


Lactate, Fructose and Glucose Oxidation Profiles in Sports Drinks and the Effect on Exercise Performance

Cultural Diversity, Economic Development and Societal Instability

Stochastic Species Turnover and Stable Coexistence in a Species-Rich, Fire-Prone Plant Community

Global Patterns of City Size Distributions and Their Fundamental Drivers

Children's Health Status: Examining the Associations among Income Poverty, Material Hardship, and Parental Factors

As always: read, rate, comment, annotate, use and reuse and, if you blog about the PLoS ONE papers, try to use the correct form of the URL in order to generate a trackback.


More like this

Do Individual Females Differ Intrinsically in Their Propensity to Engage in Extra-Pair Copulations? A repost Now, this is truly important applied science, in PLoS. While many studies have investigated the occurrence of extra-pair paternity in wild populations of birds, we still know surprisingly…
tags:, superb starling, Spreo superbus, Lamprotornis superbus, birds, behavior, infidelity Superb starling, Lamprotornis (Spreo) superbus. These small birds are commonly found in open woodlands and savannahs throughout Northeast Africa. Image: Hogle Zoo, Utah. While it is…
Multiple foundress queens of Acromyrmex versicolor atop their shared fungus garden. A striking result from recent studies on the co-evolution of leafcutter ants and their fungus is that the two lineages do not show a tight pattern of coevolution.  That is, the evolutionary relationships among the…
tags: blue tit, Cyanistes caeruleus, extrapair fertilization, genetic benefit hypothesis, genetic similarity, plumage color, birdsong, ornithology, behavioral ecology Blue tit, Cyanistes caeruleus. Image: Paul Hillion, 26 April 2008. Even though most bird species form social bonds with their…