There are 41 new articles published in PLoS ONE tonight. Look around, rate, comment, and send trackbacks. Here are my picks for this week:
Song Diversity Predicts the Viability of Fragmented Bird Populations:
In the global scenario of increasing habitat fragmentation, finding appropriate indicators of population viability is a priority for conservation. We explored the potential of learned behaviours, specifically acoustic signals, to predict the persistence over time of fragmented bird populations. We found an association between male song diversity and the annual rate of population change, population productivity and population size, resulting in birds singing poor repertoires in populations more prone to extinction. This is the first demonstration that population viability can be predicted by a cultural trait (acquired via social learning). Our results emphasise that cultural attributes can reflect not only individual-level characteristics, but also the emergent population-level properties. This opens the way to the study of animal cultural diversity in the increasingly common human-altered landscapes.
Population-Wide Emergence of Antiviral Resistance during Pandemic Influenza:
The emergence of neuraminidase inhibitor resistance has raised concerns about the prudent use of antiviral drugs in response to the next influenza pandemic. While resistant strains may initially emerge with compromised viral fitness, mutations that largely compensate for this impaired fitness can arise. Understanding the extent to which these mutations affect the spread of disease in the population can have important implications for developing pandemic plans. By employing a deterministic mathematical model, we investigate possible scenarios for the emergence of population-wide resistance in the presence of antiviral drugs. The results show that if the treatment level (the fraction of clinical infections which receives treatment) is maintained constant during the course of the outbreak, there is an optimal level that minimizes the final size of the pandemic. However, aggressive treatment above the optimal level can substantially promote the spread of highly transmissible resistant mutants and increase the total number of infections. We demonstrate that resistant outbreaks can occur more readily when the spread of disease is further delayed by applying other curtailing measures, even if treatment levels are kept modest. However, by changing treatment levels over the course of the pandemic, it is possible to reduce the final size of the pandemic below the minimum achieved at the optimal constant level. This reduction can occur with low treatment levels during the early stages of the pandemic, followed by a sharp increase in drug-use before the virus becomes widely spread. Our findings suggest that an adaptive antiviral strategy with conservative initial treatment levels, followed by a timely increase in the scale of drug-use, can minimize the final size of a pandemic while preventing large outbreaks of resistant infections.
Hippocampus Shape Analysis and Late-Life Depression:
Major depression in the elderly is associated with brain structural changes and vascular lesions. Changes in the subcortical regions of the limbic system have also been noted. Studies examining hippocampus volumetric differences in depression have shown variable results, possibly due to any volume differences being secondary to local shape changes rather than differences in the overall volume. Shape analysis offers the potential to detect such changes. The present study applied spherical harmonic (SPHARM) shape analysis to the left and right hippocampi of 61 elderly subjects with major depression and 43 non-depressed elderly subjects. Statistical models controlling for age, sex, and total cerebral volume showed a significant reduction in depressed compared with control subjects in the left hippocampus (F1,103 = 5.26; p = 0.0240) but not right hippocampus volume (F1,103 = 0.41; p = 0.5213). Shape analysis showed significant differences in the mid-body of the left (but not the right) hippocampus between depressed and controls. When the depressed group was dichotomized into those whose depression was remitted at time of imaging and those who were unremitted, the shape comparison showed remitted subjects to be indistinguishable from controls (both sides) while the unremitted subjects differed in the midbody and the lateral side near the head. Hippocampal volume showed no difference between controls and remitted subjects but nonremitted subjects had significantly smaller left hippocampal volumes with no significant group differences in the right hippocampus. These findings may provide support to other reports of neurogenic effects of antidepressants and their relation to successful treatment for depressive symptoms.
Human body height is a complex genetic trait with high heritability. We performed an association study of 17 candidate genes for height in the Uppsala Longitudinal Study of Adult Men (ULSAM) that consists of 1153 elderly men of age 70 born in the central region of Sweden. First we genotyped a panel of 137 single nucleotide polymorphism (SNPs) evenly distributed across the candidate genes in the ULSAM cohort. We identified 4 SNPs in the estrogen receptor gene (ESR1) on chromosome 6q25.1 with suggestive signals of association (p<0.05) with standing body height. This result was followed up by genotyping the same 25 SNPs in the ESR1 gene as in ULSAM in a second population cohort, the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) cohort that consist of 507 males and 509 females of age 70 from the same geographical region as ULSAM. One SNP, rs2179922 located in intron 4 of ESR1 showed and association signal (p = 0.0056) in the male samples from the PIVUS cohort. Homozygote carriers of the G-allele of the SNP rs2179922 were on average 0.90 cm taller than individuals with the two other genotypes at this SNP in the ULSAM cohort and 2.3 cm taller in the PIVUS cohort. No association was observed for the females in the PIVUS cohort.
Comparative Analysis of Acinetobacters: Three Genomes for Three Lifestyles:
Acinetobacter baumannii is the source of numerous nosocomial infections in humans and therefore deserves close attention as multidrug or even pandrug resistant strains are increasingly being identified worldwide. Here we report the comparison of two newly sequenced genomes of A. baumannii. The human isolate A. baumannii AYE is multidrug resistant whereas strain SDF, which was isolated from body lice, is antibiotic susceptible. As reference for comparison in this analysis, the genome of the soil-living bacterium A. baylyi strain ADP1 was used. The most interesting dissimilarities we observed were that i) whereas strain AYE and A. baylyi genomes harbored very few Insertion Sequence elements which could promote expression of downstream genes, strain SDF sequence contains several hundred of them that have played a crucial role in its genome reduction (gene disruptions and simple DNA loss); ii) strain SDF has low catabolic capacities compared to strain AYE. Interestingly, the latter has even higher catabolic capacities than A. baylyi which has already been reported as a very nutritionally versatile organism. This metabolic performance could explain the persistence of A. baumannii nosocomial strains in environments where nutrients are scarce; iii) several processes known to play a key role during host infection (biofilm formation, iron uptake, quorum sensing, virulence factors) were either different or absent, the best example of which is iron uptake. Indeed, strain AYE and A. baylyi use siderophore-based systems to scavenge iron from the environment whereas strain SDF uses an alternate system similar to the Haem Acquisition System (HAS). Taken together, all these observations suggest that the genome contents of the 3 Acinetobacters compared are partly shaped by life in distinct ecological niches: human (and more largely hospital environment), louse, soil.
Trade-Offs between the Metabolic Rate and Population Density of Plants:
The energetic equivalence rule, which is based on a combination of metabolic theory and the self-thinning rule, is one of the fundamental laws of nature. However, there is a progressively increasing body of evidence that scaling relationships of metabolic rate vs. body mass and population density vs. body mass are variable and deviate from their respective theoretical values of 3/4 and â3/4 or â2/3. These findings questioned the previous hypotheses of energetic equivalence rule in plants. Here we examined the allometric relationships between photosynthetic mass (Mp) or leaf mass (ML) vs. body mass (β); population density vs. body mass (δ); and leaf mass vs. population density, for desert shrubs, trees, and herbaceous plants, respectively. As expected, the allometric relationships for both photosynthetic mass (i.e. metabolic rate) and population density varied with the environmental conditions. However, the ratio between the two exponents was â1 (i.e. β/δ = â1) and followed the trade-off principle when local resources were limited. Our results demonstrate for the first time that the energetic equivalence rule of plants is based on trade-offs between the variable metabolic rate and population density rather than their constant allometric exponents.
Research on multisensory integration during natural tasks such as reach-to-grasp is still in its infancy. Crossmodal links between vision, proprioception and audition have been identified, but how olfaction contributes to plan and control reach-to-grasp movements has not been decisively shown. We used kinematics to explicitly test the influence of olfactory stimuli on reach-to-grasp movements. Subjects were requested to reach towards and grasp a small or a large visual target (i.e., precision grip, involving the opposition of index finger and thumb for a small size target and a power grip, involving the flexion of all digits around the object for a large target) in the absence or in the presence of an odour evoking either a small or a large object that if grasped would require a precision grip and a whole hand grasp, respectively. When the type of grasp evoked by the odour did not coincide with that for the visual target, interference effects were evident on the kinematics of hand shaping and the level of synergies amongst fingers decreased. When the visual target and the object evoked by the odour required the same type of grasp, facilitation emerged and the intrinsic relations amongst individual fingers were maintained. This study demonstrates that olfactory information contains highly detailed information able to elicit the planning for a reach-to-grasp movement suited to interact with the evoked object. The findings offer a substantial contribution to the current debate about the multisensory nature of the sensorimotor transformations underlying grasping.
Modulation of Brain Resting-State Networks by Sad Mood Induction:
There is growing interest in the nature of slow variations of the blood oxygen level-dependent (BOLD) signal observed in functional MRI resting-state studies. In humans, these slow BOLD variations are thought to reflect an underlying or intrinsic form of brain functional connectivity in discrete neuroanatomical systems. While these 'resting-state networks' may be relatively enduring phenomena, other evidence suggest that dynamic changes in their functional connectivity may also emerge depending on the brain state of subjects during scanning. In this study, we examined healthy subjects (n = 24) with a mood induction paradigm during two continuous fMRI recordings to assess the effects of a change in self-generated mood state (neutral to sad) on the functional connectivity of these resting-state networks (n = 24). Using independent component analysis, we identified five networks that were common to both experimental states, each showing dominant signal fluctuations in the very low frequency domain (~0.04 Hz). Between the two states, we observed apparent increases and decreases in the overall functional connectivity of these networks. Primary findings included increased connectivity strength of a paralimbic network involving the dorsal anterior cingulate and anterior insula cortices with subjects' increasing sadness and decreased functional connectivity of the 'default mode network'. These findings support recent studies that suggest the functional connectivity of certain resting-state networks may, in part, reflect a dynamic image of the current brain state. In our study, this was linked to changes in subjective mood.
A Role for Gene Duplication and Natural Variation of Gene Expression in the Evolution of Metabolism:
Most eukaryotic genomes have undergone whole genome duplications during their evolutionary history. Recent studies have shown that the function of these duplicated genes can diverge from the ancestral gene via neo- or sub-functionalization within single genotypes. An additional possibility is that gene duplicates may also undergo partitioning of function among different genotypes of a species leading to genetic differentiation. Finally, the ability of gene duplicates to diverge may be limited by their biological function. To test these hypotheses, I estimated the impact of gene duplication and metabolic function upon intraspecific gene expression variation of segmental and tandem duplicated genes within Arabidopsis thaliana. In all instances, the younger tandem duplicated genes showed higher intraspecific gene expression variation than the average Arabidopsis gene. Surprisingly, the older segmental duplicates also showed evidence of elevated intraspecific gene expression variation albeit typically lower than for the tandem duplicates. The specific biological function of the gene as defined by metabolic pathway also modulated the level of intraspecific gene expression variation. The major energy metabolism and biosynthetic pathways showed decreased variation, suggesting that they are constrained in their ability to accumulate gene expression variation. In contrast, a major herbivory defense pathway showed significantly elevated intraspecific variation suggesting that it may be under pressure to maintain and/or generate diversity in response to fluctuating insect herbivory pressures. These data show that intraspecific variation in gene expression is facilitated by an interaction of gene duplication and biological activity. Further, this plays a role in controlling diversity of plant metabolism.
- Log in to post comments