New and Exciting in PLoS

Plant Classification from Bat-Like Echolocation Signals:

Bats are able to classify plants using echolocation. They emit ultrasonic signals and can recognize the plant according to the echo returning from it. This ability assists them in many of their daily activities, like finding food sources associated with certain plants or using landmarks for navigation or homing. The echoes created by plants are highly complex signals, combining together all the reflections from the many leaves that a plant contains. Classifying plants or other complex objects is therefore considered a troublesome task and we are far from understanding how bats do it. In this work, we suggest a simple algorithm for classifying plants according to their echoes. Our algorithm is able to classify with high accuracy plant echoes created by a sonar head that simulates a typical frequency-modulated bat's emitting receiving parameters. Our results suggest that plant classification might be easier than formerly considered. It gives us some hints as to which features might be most suitable for the bats, and it opens possibilities for future behavioral experiments to compare its performance with that of the bats.

Evolution of a Core Gene Network for Skeletogenesis in Chordates:

Important molecular mechanisms underlying mammalian skeletogenesis have been described but knowledge about the evolutionary origin of these gene networks is limited. The Runt gene family (Runx1-3) is of extraordinary importance for skeletogenesis. Runx2 deficient mice completely lack bone. Runx2 and Runx3 are essential for cartilage development and Runx2 regulates the key factor Indian hedgehog, which coordinates skeletogenesis. Here, we reconstructed Runt gene evolution in correlation to skeletal evolution. By analyzing lancelets, one of the closest living relatives of vertebrates, we revealed that the single Runt and Hedgehog family founder genes were co-expressed in primitive skeletal elements of the chordate stem species. Interestingly, at this stage the Runt and Hedgehog pathways were already directly linked to one another. Furthermore we isolated two Runt genes from a representative of jawless cartilaginous fish (hagfish) and three Runt genes from jawed cartilaginous fish (dogfish) which were all expressed in cartilage. The dogfish Runt genes were also found in teeth and placoid scales. This study suggests that Runt genes were involved in all ancient processes of chordate skeletogenesis. Furthermore the analysis supports the theory that most likely the gut was the tissue that originally secreted an acellular gill gut skeleton in the chordate ancestor.

More like this

Echolocation - or biological sonar - can be thought of as an auditory imaging system that is used by organisms in environments where vision is ineffective. It involves the emission of vocalizations by the animal, and the detection of the echoes of those sounds, which are used to produce three-…
Bone is a sophisticated substance, much more than just a rock-like mineral in an interesting shape. It's a living tissue, invested with cells dedicated to continually remodeling the mineral matrix. That matrix is also an intricate material, threaded with fibers of a protein, type II collagen, that…
BATS use sonar, or echolocation, to navigate complex environments, and also to forage and then accurately pinpoint the flying insects on which they prey. Insects in turn have evolved various counter-measures to evade capture. Some species have ears which are in tune to the echolocation signals,…
Millions of years before humans invented sonar, bats and toothed whales had mastered the biological version of the same trick - echolocation. By timing the echoes of their calls, one group effortlessly flies through the darkest of skies and the other swims through the murkiest of waters. It's…