New and Exciting in PLoS ONE

There are 12 new articles in PLoS ONE today. As always, you should rate the articles, post notes and comments and send trackbacks when you blog about the papers. Here are my own picks for the week - you go and look for your own favourites:

Low Frequency Groans Indicate Larger and More Dominant Fallow Deer (Dama dama) Males:

Models of honest advertisement predict that sexually selected calls should signal male quality. In most vertebrates, high quality males have larger body sizes that determine higher social status and in turn higher reproductive success. Previous research has emphasised the importance of vocal tract resonances or formant frequencies of calls as cues to body size in mammals. However, the role of the acoustic features of vocalisations as cues to other quality-related phenotypic characteristics of callers has rarely been investigated. We examined whether the acoustic structure of fallow deer groans provides reliable information on the quality of the caller, by exploring the relationships between male quality (body size, dominance rank, and mating success) and the frequency components of calls (fundamental frequency, formant frequencies, and formant dispersion). We found that body size was not related to the fundamental frequency of groans, whereas larger males produced groans with lower formant frequencies and lower formant dispersion. Groans of high-ranking males were characterised by lower minimum fundamental frequencies and to a lesser extent, by lower formant dispersions. Dominance rank was the factor most strongly related to mating success, with higher-ranking males having higher mating success. The minimum fundamental frequency and the minimum formant dispersion were indirectly related to male mating success (through dominance rank). Our study is the first to show that sexually selected vocalisations can signal social dominance in mammals other than primates, and reveals that independent acoustic components encode accurate information on different phenotypic aspects of male quality.

'Thinking about Not-Thinking': Neural Correlates of Conceptual Processing during Zen Meditation:

Recent neuroimaging studies have identified a set of brain regions that are metabolically active during wakeful rest and consistently deactivate in a variety the performance of demanding tasks. This "default network" has been functionally linked to the stream of thoughts occurring automatically in the absence of goal-directed activity and which constitutes an aspect of mental behavior specifically addressed by many meditative practices. Zen meditation, in particular, is traditionally associated with a mental state of full awareness but reduced conceptual content, to be attained via a disciplined regulation of attention and bodily posture. Using fMRI and a simplified meditative condition interspersed with a lexical decision task, we investigated the neural correlates of conceptual processing during meditation in regular Zen practitioners and matched control subjects. While behavioral performance did not differ between groups, Zen practitioners displayed a reduced duration of the neural response linked to conceptual processing in regions of the default network, suggesting that meditative training may foster the ability to control the automatic cascade of semantic associations triggered by a stimulus and, by extension, to voluntarily regulate the flow of spontaneous mentation.

Genome-Wide Analysis of the 'Cut-and-Paste' Transposons of Grapevine:

The grapevine is a widely cultivated crop and a high number of different varieties have been selected since its domestication in the Neolithic period. Although sexual crossing has been a major driver of grapevine evolution, its vegetative propagation enhanced the impact of somatic mutations and has been important for grapevine diversity. Transposable elements are known to be major contributors to genome variability and, in particular, to somatic mutations. Thus, transposable elements have probably played a major role in grapevine domestication and evolution. The recent publication of the complete grapevine genome opens the possibility for an in deep analysis of its transposon content. We present here a detailed analysis of the "cut-and-paste" class II transposons present in the genome of grapevine. We characterized 1160 potentially complete grapevine transposons as well as 2086 defective copies. We report on the structure of each element, their potentiality to encode a functional transposase, and the existence of matching ESTs that could suggest their transcription. Our results show that these elements have transduplicated and amplified cellular sequences and some of them have been domesticated and probably fulfill cellular functions. In addition, we provide evidences that the mobility of these elements has contributed to the genomic variability of this species.

Peripheral and Central Determinants of a Nociceptive Reaction: An Approach to Psychophysics in the Rat:

The quantitative end-point for many behavioral tests of nociception is the reaction time, i.e. the time lapse between the beginning of the application of a stimulus, e.g. heat, and the evoked response. Since it is technically impossible to heat the skin instantaneously by conventional means, the question of the significance of the reaction time to radiant heat remains open. We developed a theoretical framework, a related experimental paradigm and a model to analyze in psychophysical terms the "tail-flick" responses of rats to random variations of noxious radiant heat. A CO2 laser was used to avoid the drawbacks associated with standard methods of thermal stimulation. Heating of the skin was recorded with an infrared camera and was stopped by the reaction of the animal. For the first time, we define and determine two key descriptors of the behavioral response, namely the behavioral threshold (Tβ) and the behavioral latency (Lβ). By employing more than one site of stimulation, the paradigm allows determination of the conduction velocity of the peripheral fibers that trigger the response (V) and an estimation of the latency (Ld) of the central decision-making process. Ld (~130 ms) is unaffected by ambient or skin temperature changes that affect the behavioral threshold (~42.2-44.9°C in the 20-30°C range), behavioral latency (


More like this