New and Exciting in PLoS ONE

There are 11 new articles in PLoS ONE today. As always, you should rate the articles, post notes and comments and send trackbacks when you blog about the papers. Here are my own picks for the week - you go and look for your own favourites:

Nominalization and Alternations in Biomedical Language:

This paper presents data on alternations in the argument structure of common domain-specific verbs and their associated verbal nominalizations in the PennBioIE corpus. Alternation is the term in theoretical linguistics for variations in the surface syntactic form of verbs, e.g. the different forms of stimulate in FSH stimulates follicular development and follicular development is stimulated by FSH. The data is used to assess the implications of alternations for biomedical text mining systems and to test the fit of the sublanguage model to biomedical texts. We examined 1,872 tokens of the ten most common domain-specific verbs or their zero-related nouns in the PennBioIE corpus and labelled them for the presence or absence of three alternations. We then annotated the arguments of 746 tokens of the nominalizations related to these verbs and counted alternations related to the presence or absence of arguments and to the syntactic position of non-absent arguments. We found that alternations are quite common both for verbs and for nominalizations. We also found a previously undescribed alternation involving an adjectival present participle. We found that even in this semantically restricted domain, alternations are quite common, and alternations involving nominalizations are exceptionally diverse. Nonetheless, the sublanguage model applies to biomedical language. We also report on a previously undescribed alternation involving an adjectival present participle.

Evidence of Expanded Host Range and Mammalian-Associated Genetic Changes in a Duck H9N2 Influenza Virus Following Adaptation in Quail and Chickens:

H9N2 avian influenza viruses continue to circulate worldwide; in Asia, H9N2 viruses have caused disease outbreaks and established lineages in land-based poultry. Some H9N2 strains are considered potentially pandemic because they have infected humans causing mild respiratory disease. In addition, some of these H9N2 strains replicate efficiently in mice without prior adaptation suggesting that H9N2 strains are expanding their host range. In order to understand the molecular basis of the interspecies transmission of H9N2 viruses, we adapted in the laboratory a wildtype duck H9N2 virus, influenza A/duck/Hong Kong/702/79 (WT702) virus, in quail and chickens through serial lung passages. We carried out comparative analysis of the replication and transmission in quail and chickens of WT702 and the viruses obtained after 23 serial passages in quail (QA23) followed by 10 serial passages in chickens (QA23CkA10). Although the WT702 virus can replicate and transmit in quail, it replicates poorly and does not transmit in chickens. In contrast, the QA23CkA10 virus was very efficient at replicating and transmitting in quail and chickens. Nucleotide sequence analysis of the QA23 and QA23CkA10 viruses compared to the WT702 virus indicated several nucleotide substitutions resulting in amino acid changes within the surface and internal proteins. In addition, a 21-amino acid deletion was found in the stalk of the NA protein of the QA23 virus and was maintained without further modification in the QA23CkA10 adapted virus. More importantly, both the QA23 and the QA23CkA10 viruses, unlike the WT702 virus, were able to readily infect mice, produce a large-plaque phenotype, showed faster replication kinetics in tissue culture, and resulted in the quick selection of the K627 amino acid mammalian-associated signature in PB2. These results are in agreement with the notion that adaptation of H9 viruses to land-based birds can lead to strains with expanded host range.

More like this

It's taken longer than many of us wanted, but some new data on host susceptibility is now coming in. The influenza research group at St. Jude's has just published a paper in CDC's journal, Emerging Infectious Diseases, verifying that common land based birds can be infected with highly pathogenic…
The headlines are exciting: Chinese scientists identify deadly gene in H5N1. The story is also upbeat: Chinese scientists have identified a gene in the H5N1 bird flu virus which they say is responsible for its virulence in poultry, opening the way for new vaccines. [snip] "We can now understand how…
This is a repost from the old ERV. A retrotransposed ERV :P I dont trust them staying up at Blogger, and the SEED overlords are letting me have 4 reposts a week, so Im gonna take advantage of that! I am going to try to add more comments to these posts for the old readers-- Think of these as '…
Whenever I hear about the latest H5N1 vaccine fix I have the same reaction. If only we'd started doing this several years ago when the threat of an avian influenza pandemic was plausible, we'd be so much farther ahead, if not "there" by now. But we didn't. CDC chased the bioterrorism phantom, to…