There are 11 new articles in PLoS ONE today. As always, you should rate the articles, post notes and comments and send trackbacks when you blog about the papers. You can now also easily place articles on various social services (CiteULike, Connotea, Stumbleupon, Facebook and Digg) with just one click. Here are my own picks for the week - you go and look for your own favourites:
The end-Permian biotic crisis (~252.5 Ma) represents the most severe extinction event in Earth's history. This paper investigates diversity patterns in Anomodontia, an extinct group of therapsid synapsids ('mammal-like reptiles'), through time and in particular across this event. As herbivores and the dominant terrestrial tetrapods of their time, anomodonts play a central role in assessing the impact of the end-Permian extinction on terrestrial ecosystems. Taxonomic diversity analysis reveals that anomodonts experienced three distinct phases of diversification interrupted by the same number of extinctions, i.e. an end-Guadalupian, an end-Permian, and a mid-Triassic extinction. A positive correlation between the number of taxa and the number of formations per time interval shows that anomodont diversity is biased by the Permian-Triassic terrestrial rock record. Normalized diversity curves indicate that anomodont richness continuously declines from the Middle Permian to the Late Triassic, but also reveals all three extinction events. Taxonomic rates (origination and extinction) indicate that the end-Guadalupian and end-Permian extinctions were driven by increased rates of extinction as well as low origination rates. However, this pattern is not evident at the final decline of anomodont diversity during the Middle Triassic. Therefore, it remains unclear whether the Middle Triassic extinction represents a gradual or abrupt event that is unique to anomodonts or more common among terrestrial tetrapods. The end-Permian extinction represents the most distinct event in terms of decline in anomodont richness and turnover rates.
Ordered Patterns of Cell Shape and Orientational Correlation during Spontaneous Cell Migration:
In the absence of stimuli, most motile eukaryotic cells move by spontaneously coordinating cell deformation with cell movement in the absence of stimuli. Yet little is known about how cells change their own shape and how cells coordinate the deformation and movement. Here, we investigated the mechanism of spontaneous cell migration by using computational analyses. We observed spontaneously migrating Dictyostelium cells in both a vegetative state (round cell shape and slow motion) and starved one (elongated cell shape and fast motion). We then extracted regular patterns of morphological dynamics and the pattern-dependent systematic coordination with filamentous actin (F-actin) and cell movement by statistical dynamic analyses. We found that Dictyostelium cells in both vegetative and starved states commonly organize their own shape into three ordered patterns, elongation, rotation, and oscillation, in the absence of external stimuli. Further, cells inactivated for PI3-kinase (PI3K) and/or PTEN did not show ordered patterns due to the lack of spatial control in pseudopodial formation in both the vegetative and starved states. We also found that spontaneous polarization was achieved in starved cells by asymmetric localization of PTEN and F-actin. This breaking of the symmetry of protein localization maintained the leading edge and considerably enhanced the persistence of directed migration, and overall random exploration was ensured by switching among the different ordered patterns. Our findings suggest that Dictyostelium cells spontaneously create the ordered patterns of cell shape mediated by PI3K/PTEN/F-actin and control the direction of cell movement by coordination with these patterns even in the absence of external stimuli.
Pesticide resistance is a major concern in natural populations and a model trait to study adaptation. Despite the importance of this trait, the dynamics of its evolution and of its ecological consequences remain largely unstudied. To fill this gap, we performed experimental evolution with replicated populations of Caenorhabditis elegans exposed to the pesticide Levamisole during 20 generations. Exposure to Levamisole resulted in decreased survival, fecundity and male frequency, which declined from 30% to zero. This was not due to differential susceptibility of males. Rather, the drug affected mobility, resulting in fewer encounters, probably leading to reduced outcrossing rates. Adaptation, i.e., increased survival and fecundity, occurred within 10 and 20 generations, respectively. Male frequency also increased by generation 20. Adaptation costs were undetected in the ancestral environment and in presence of Ivermectin, another widely-used pesticide with an opposite physiological effect. Our results demonstrate that pesticide resistance can evolve at an extremely rapid pace. Furthermore, we unravel the effects of behaviour on life-history traits and test the environmental dependence of adaptation costs. This study establishes experimental evolution as a powerful tool to tackle pesticide resistance, and paves the way to further investigations manipulating environmental and/or genetic factors underlying adaptation to pesticides.
Infection with Human Papillomavirus (HPV) is a necessary event in the multi-step process of cervical carcinogenesis. Little is known about the natural history of HPV infection among unscreened young adults. As prophylactic vaccines are being developed to prevent specifically HPV 16 and 18 infections, shifts in prevalence in the post vaccine era may be expected. This study provides a unique opportunity to gather baseline data before changes by nationwide vaccination occur. This cross-sectional study is part of a large prospective epidemiologic study performed among 2065 unscreened women aged 18 to 29 years. Women returned a self-collected cervico-vaginal specimen and filled out a questionnaire. All HPV DNA-positive samples (by SPF10 DEIA) were genotyped using the INNO-LiPA HPV genotyping assay. HPV point prevalence in this sample was 19%. Low and high risk HPV prevalence was 9.1% and 11.8%, respectively. A single HPV-type was detected in 14.9% of all women, while multiple types were found in 4.1%. HPV-types 16 (2.8%) and 18 (1.4%) were found concomitantly in only 3 women (0.1%). There was an increase in HPV prevalence till 22 years. Multivariate analysis showed that number of lifetime sexual partners was the most powerful predictor of HPV positivity, followed by type of relationship, frequency of sexual contact, age, and number of sexual partners over the past 6 months. This study shows that factors independently associated with HPV prevalence are mainly related to sexual behaviour. Combination of these results with the relative low prevalence of HPV 16 and/or 18 may be promising for expanding the future target group for catch up vaccination. Furthermore, these results provide a basis for research on possible future shifts in HPV genotype prevalence, and enable a better estimate of the effect of HPV 16-18 vaccination on cervical cancer incidence.
- Log in to post comments