There are 13 new articles in PLoS ONE today. As always, you should rate the articles, post notes and comments and send trackbacks when you blog about the papers. You can now also easily place articles on various social services (CiteULike, Connotea, Stumbleupon, Facebook and Digg) with just one click. Here are my own picks for the week - you go and look for your own favourites:
Expert Financial Advice Neurobiologically 'Offloads' Financial Decision-Making under Risk:
Financial advice from experts is commonly sought during times of uncertainty. While the field of neuroeconomics has made considerable progress in understanding the neurobiological basis of risky decision-making, the neural mechanisms through which external information, such as advice, is integrated during decision-making are poorly understood. In the current experiment, we investigated the neurobiological basis of the influence of expert advice on financial decisions under risk. While undergoing fMRI scanning, participants made a series of financial choices between a certain payment and a lottery. Choices were made in two conditions: 1) advice from a financial expert about which choice to make was displayed (MES condition); and 2) no advice was displayed (NOM condition). Behavioral results showed a significant effect of expert advice. Specifically, probability weighting functions changed in the direction of the expert's advice. This was paralleled by neural activation patterns. Brain activations showing significant correlations with valuation (parametric modulation by value of lottery/sure win) were obtained in the absence of the expert's advice (NOM) in intraparietal sulcus, posterior cingulate cortex, cuneus, precuneus, inferior frontal gyrus and middle temporal gyrus. Notably, no significant correlations with value were obtained in the presence of advice (MES). These findings were corroborated by region of interest analyses. Neural equivalents of probability weighting functions showed significant flattening in the MES compared to the NOM condition in regions associated with probability weighting, including anterior cingulate cortex, dorsolateral PFC, thalamus, medial occipital gyrus and anterior insula. Finally, during the MES condition, significant activations in temporoparietal junction and medial PFC were obtained. These results support the hypothesis that one effect of expert advice is to "offload" the calculation of value of decision options from the individual's brain.
Detecting Linkage between a Trait and a Marker in a Random Mating Population without Pedigree Record:
Modern linkage-based approaches employing extended pedigrees are becoming powerful tools for localizing complex quantitative trait loci. For these linkage mapping methods, it is necessary to reconstruct extended pedigrees which include living individuals, using extensive pedigree records. Unfortunately, such records are not always easy to obtain and application of the linkage-based approaches has been restricted. Within a finite population under random mating, latent inbreeding rather than non-random inbreeding by consanguineous marriages is expected to occur and is attributable to coalescence in a finite population. Interestingly, it has been revealed that significant random inbreeding exists even in general human populations. Random inbreeding should be used to detect the hidden coancestry between individuals for a particular chromosomal position and it could also have application in linkage mapping methods. Here we present a novel method, named finite population based linkage mapping (FPL) method, to detect linkage between a quantitative trait and a marker via random inbreeding in a finite population without pedigree records. We show how to estimate coancestry for a chromosomal position between individuals by using multipoint Bayesian estimation. Subsequently, we describe the FPL method for detecting linkage via interval mapping method using a nonparametric test. We show that the FPL method does work via simulated data. For a random sample from a finite population, the FPL method is more powerful than a standard pedigree-based linkage mapping method with using genotypes of all parents of the sample. In addition, the FPL method was demonstrated by actual microsatellite genotype data of 750 Japanese individuals that are unrelated according to pedigree records to map a known Psoriasis susceptible locus. For samples without pedigree records, it was suggested that the FPL method require limited number of individuals, therefore would be better than other methods using thousands of individuals.
- Log in to post comments