There are 14 new articles in PLoS ONE today. As always, you should rate the articles, post notes and comments and send trackbacks when you blog about the papers. You can now also easily place articles on various social services (CiteULike, Connotea, Stumbleupon, Facebook and Digg) with just one click. Here are my own picks for the week - you go and look for your own favourites:
Retinal ganglion cells that express the photopigment melanopsin are intrinsically photosensitive (ipRGCs) and exhibit robust synaptically driven ON-responses to light, yet they will continue to depolarize in response to light when all synaptic input from rod and cone photoreceptors is removed. The light-evoked increase in firing of classical ganglion cells is determined by synaptic input from ON-bipolar cells in the proximal sublamina of the inner plexiform layer. OFF-bipolar cells synapse with ganglion cell dendrites in the distal sublamina of the inner plexiform layer. Of the several types of ipRGC that have been described, M1 ipRGCs send dendrites exclusively into the OFF region of the inner plexiform layer where they stratify near the border of the inner nuclear layer. We tested whether M1 ipRGCs with dendrites restricted to the OFF sublamina of the inner plexiform layer receive synaptic ON-bipolar input by examining light-induced gene expression in vivo using melanopsin knockout mice. Mice in which both copies of the melanopsin gene (opn4) have been replaced with the tau-lacZ gene (homozygous tau-lacZ+/+ knockin mice) are melanopsin knockouts (opn4â/â) but M1 ipRGCs are specifically identified by their expression of β-galactosidase. Approximately 60% of M1 ipRGCs in Opn4â/â mice exposed to 3 hrs of light expressed c-Fos; no β-galactosidase-positive RGCs expressed c-Fos in the dark. Intraocular application of L-AP4, a compound which blocks transmission of visual signals between photoreceptors and ON-bipolar cells significantly reduced light-evoked c-Fos expression in M1 ipRGCs compared to saline injected eyes (66% saline vs 27% L-AP4). The results are the first description of a light-evoked response in an ipRGC lacking melanopsin and provide in vivo confirmation of previous in vitro observations illustrating an unusual circuit in the retina in which ganglion cells sending dendrites to the OFF sublamina of the inner plexiform layer receive excitatory synaptic input from ON-bipolar cells.
A Chromosomal Inversion Unique to the Northern White-Cheeked Gibbon:
The gibbon family belongs to the superfamily Hominoidea and includes 15 species divided into four genera. Each genus possesses a distinct karyotype with chromosome numbers varying from 38 to 52. This diversity is the result of numerous chromosomal changes that have accumulated during the evolution of the gibbon lineage, a quite unique feature in comparison with other hominoids and most of the other primates. Some gibbon species and subspecies rank among the most endangered primates in the world. Breeding programs can be extremely challenging and hybridization plays an important role within the factors responsible for the decline of captive gibbons. With less than 500 individuals left in the wild, the northern white-cheeked gibbon (Nomascus leucogenys leucogenys, NLE) is the most endangered primate in a successful captive breeding program. We present here the analysis of an inversion that we show being specific for the northern white-cheeked gibbon and can be used as one of the criteria to distinguish this subspecies from other gibbon taxa. The availability of the sequence spanning for one of the breakpoints of the inversion allows detecting it by a simple PCR test also on low quality DNA. Our results demonstrate the important role of genomics in providing tools for conservation efforts.
Physiological Stress Mediates the Honesty of Social Signals:
Extravagant ornaments used as social signals evolved to advertise their bearers' quality. The Immunocompetence Handicap Hypothesis proposes that testosterone-dependent ornaments reliably signal health and parasite resistance; however, empirical studies have shown mixed support. Alternatively, immune function and parasite resistance may be indirectly or directly related to glucocorticoid stress hormones. We propose that an understanding of the interplay between the individual and its environment, particularly how they cope with stressors, is crucial for understanding the honesty of social signals. We analyzed corticosterone deposited in growing feathers as an integrated measure of hypothalamic-pituitary-adrenal activity in a wild territorial bird, the red grouse Lagopus lagopus scoticus. We manipulated two key, interrelated components, parasites and testosterone, which influence both ornamentation and fitness. Birds were initially purged of parasites, and later challenged with parasites or not, while at the same time being given testosterone or control implants, using a factorial experimental design. At the treatment level, testosterone enhanced ornamentation, while parasites reduced it, but only in males not implanted with testosterone. Among individuals, the degree to which both parasites and testosterone had an effect was strongly dependent on the amount of corticosterone in the feather grown during the experiment. The more stressors birds had experienced (i.e., higher corticosterone), the more parasites developed, and the less testosterone enhanced ornamentation. With this unique focus on the individual, and a novel, integrative, measure of response to stressors, we show that ornamentation is ultimately a product of the cumulative physiological response to environmental challenges. These findings lead toward a more realistic concept of honesty in signaling as well as a broader discussion of the concept of stress.
- Log in to post comments