New and Exciting in PLoS ONE

There are 11 new articles in PLoS ONE today. As always, you should rate the articles, post notes and comments and send trackbacks when you blog about the papers. You can now also easily place articles on various social services (CiteULike, Connotea, Stumbleupon, Facebook and Digg) with just one click. Here are my own picks for the week - you go and look for your own favourites:

To Be or Not to Be a Flatworm: The Acoel Controversy:

Since first described, acoels were considered members of the flatworms (Platyhelminthes). However, no clear synapomorphies among the three large flatworm taxa - the Catenulida, the Acoelomorpha and the Rhabditophora - have been characterized to date. Molecular phylogenies, on the other hand, commonly positioned acoels separate from other flatworms. Accordingly, our own multi-locus phylogenetic analysis using 43 genes and 23 animal species places the acoel flatworm Isodiametra pulchra at the base of all Bilateria, distant from other flatworms. By contrast, novel data on the distribution and proliferation of stem cells and the specific mode of epidermal replacement constitute a strong synapomorphy for the Acoela plus the major group of flatworms, the Rhabditophora. The expression of a piwi-like gene not only in gonadal, but also in adult somatic stem cells is another unique feature among bilaterians. These two independent stem-cell-related characters put the Acoela into the Platyhelminthes-Lophotrochozoa clade and account for the most parsimonious evolutionary explanation of epidermal cell renewal in the Bilateria. Most available multigene analyses produce conflicting results regarding the position of the acoels in the tree of life. Given these phylogenomic conflicts and the contradiction of developmental and morphological data with phylogenomic results, the monophyly of the phylum Platyhelminthes and the position of the Acoela remain unresolved. By these data, both the inclusion of Acoela within Platyhelminthes, and their separation from flatworms as basal bilaterians are well-supported alternatives.

Evolutionary Repercussions of Avian Culling on Host Resistance and Influenza Virulence:

Keeping pandemic influenza at bay is a global health priority. Of particular concern is the continued spread of the influenza subtype H5N1 in avian populations and the increasing frequency of transmission to humans. To decrease this threat, mass culling is the principal strategy for eradicating influenza in avian populations. Although culling has a crucial short-term epidemiological benefit, evolutionary repercussions on reservoir hosts and on the viral population have not been considered. To explore the epidemiological and evolutionary repercussions of mass avian culling, we combine population genetics and epidemiological influenza dynamics in a mathematical model parameterized by clinical, epidemiological, and poultry data. We model the virulence level of influenza and the selection on a dominant allele that confers resistance against influenza [1], [2] in a poultry population. Our findings indicate that culling impedes the evolution of avian host resistance against influenza. On the pathogen side of the coevolutionary race between pathogen and host, culling selects for heightened virulence and transmissibility of influenza. Mass culling achieves a short-term benefit at the expense of long-term detriments: a more genetically susceptible host population, ultimately greater mortality, and elevated influenza virulence.

Odorant-Dependent Generation of Nitric Oxide in Mammalian Olfactory Sensory Neurons:

The gaseous signalling molecule nitric oxide (NO) is involved in various physiological processes including regulation of blood pressure, immunocytotoxicity and neurotransmission. In the mammalian olfactory bulb (OB), NO plays a role in the formation of olfactory memory evoked by pheromones as well as conventional odorants. While NO generated by the neuronal isoform of NO synthase (nNOS) regulates neurogenesis in the olfactory epithelium, NO has not been implicated in olfactory signal transduction. We now show the expression and function of the endothelial isoform of NO synthase (eNOS) in mature olfactory sensory neurons (OSNs) of adult mice. Using NO-sensitive micro electrodes, we show that stimulation liberates NO from isolated wild-type OSNs, but not from OSNs of eNOS deficient mice. Integrated electrophysiological recordings (electro-olfactograms or EOGs) from the olfactory epithelium of these mice show that NO plays a significant role in modulating adaptation. Evidence for the presence of eNOS in mature mammalian OSNs and its involvement in odorant adaptation implicates NO as an important new element involved in olfactory signal transduction. As a diffusible messenger, NO could also have additional functions related to cross adaptation, regeneration, and maintenance of MOE homeostasis.

Cell Lineage of the Ilyanassa Embryo: Evolutionary Acceleration of Regional Differentiation during Early Development:

Cell lineage studies in mollusk embryos have documented numerous variations on the lophotrochozoan theme of spiral cleavage. In the experimentally tractable embryo of the mud snail Ilyanassa, cell lineage has previously been described only up to the 29-cell stage. Here I provide a chronology of cell divisions in Ilyanassa to the stage of 84 cells (about 16 hours after first cleavage at 23°C), and show spatial arrangements of identified nuclei at stages ranging from 27 to 84 cells. During this period the spiral cleavage pattern gives way to a bilaterally symmetric, dorsoventrally polarized pattern of mitotic timing and geometry. At the same time, the mesentoblast cell 4d rapidly proliferates to form twelve cells lying deep to the dorsal ectoderm. The onset of epiboly coincides with a period of mitotic quiescence throughout the ectoderm. As in other gastropod embryos, cell cycle lengths vary widely and predictably according to cell identity, and many of the longest cell cycles occur in small daughters of highly asymmetric divisions. While Ilyanassa shares many features of embryonic cell lineage with two other caenogastropod genera, Crepidula and Bithynia, it is distinguished by a general tendency toward earlier and more pronounced diversification of cell division pattern along axes of later differential growth.

Categories

More like this

One of many open questions in evolution is the nature of bilaterian origins—when the first bilaterally symmetrical common ancestor (the Last Common Bilaterian, or LCB) to all of us mammals and insects and molluscs and polychaetes and so forth arose, and what it looked like. We know it had to have…
There are 27 new papers appearing on PLoS ONE today. A quick scan of the titles makes me want to read the following more carefully: Plasticity of the Intrinsic Period of the Human Circadian Timing System by Frank A. J. L. Scheer, Kenneth P. Wright, Richard E. Kronauer and Charles A. Czeisler:…
Do vertebrate embryos exhibit significant variation in their early development? Yes, they do—in particular, the earliest stages show distinct differences that mainly reflect differences in maternal investment and that cause significant distortions of early morphology during gastrulation. However,…
Developmental biologists are acutely interested in asymmetries in development: they are visible cues to some underlying regional differences. For instance, we'd like to know the molecules and interactions involved in taking a seemingly featureless sphere, the egg, and specifying one side to go on…