There are 19 new articles in PLoS ONE today. As always, you should rate the articles, post notes and comments and send trackbacks when you blog about the papers. You can now also easily place articles on various social services (CiteULike, Mendeley, Connotea, Stumbleupon, Facebook and Digg) with just one click. Here are my own picks for the week - you go and look for your own favourites:
Extreme Cranial Ontogeny in the Upper Cretaceous Dinosaur Pachycephalosaurus:
Extended neoteny and late stage allometric growth increase morphological disparity between growth stages in at least some dinosaurs. Coupled with relatively low dinosaur density in the Upper Cretaceous of North America, ontogenetic transformational representatives are often difficult to distinguish. For example, many hadrosaurids previously reported to represent relatively small lambeosaurine species were demonstrated to be juveniles of the larger taxa. Marginocephalians (pachycephalosaurids + ceratopsids) undergo comparable and extreme cranial morphological change during ontogeny. Cranial histology, morphology and computer tomography reveal patterns of internal skull development that show the purported diagnostic characters for the pachycephalosaurids Dracorex hogwartsia and Stygimoloch spinifer are ontogenetically derived features. Coronal histological sections of the frontoparietal dome of an adult Pachycephalosaurus wyomingensis reveal a dense structure composed of metaplastic bone with a variety of extremely fibrous and acellular tissue. Coronal histological sections and computer tomography of a skull and frontoparietal dome of Stygimoloch spinifer reveal an open intrafrontal suture indicative of a subadult stage of development. These dinosaurs employed metaplasia to rapidly grow and change the size and shape of their horns, cranial ornaments and frontoparietal domes, resulting in extreme cranial alterations during late stages of growth. We propose that Dracorex hogwartsia, Stygimoloch spinifer and Pachycephalosaurus wyomingensis are the same taxon and represent an ontogenetic series united by shared morphology and increasing skull length. Dracorex hogwartsia (juvenile) and Stygimoloch spinifer (subadult) are reinterpreted as younger growth stages of Pachycephalosaurus wyomingensis (adult). This synonymy reduces the number of pachycephalosaurid taxa from the Upper Cretaceous of North America and demonstrates the importance of cranial ontogeny in evaluating dinosaur diversity and taxonomy. These growth stages reflect a continuum rather than specific developmental steps defined by "known" terminal morphologies.
Timing of Locomotor Activity Circadian Rhythms in Caenorhabditis elegans:
Circadian rhythms are driven by endogenous biological clocks and are synchronized to environmental cues. The chronobiological study of Caenorhabditis elegans, an extensively used animal model for developmental and genetic research, might provide fundamental information about the basis of circadian rhythmicity in eukaryotes, due to its ease of use and manipulations, as well as availability of genetic data and mutant strains. The aim of this study is to fully characterize the circadian rhythm of locomotor activity in C. elegans, as well as a means for genetic screening in this nematode and the identification of circadian mutants. We have developed an infrared method to measure locomotor activity in C. elegans and found that, under constant conditions, although inter-individual variability is present, circadian periodicity shows a population distribution of periods centered at 23.9±0.4 h and is temperature-compensated. Locomotor activity is entrainable by light-dark cycles and by low-amplitude temperature cycles, peaking around the night-day transition and day, respectively. In addition, lin-42(mg152) or lin-42(n1089) mutants (bearing a mutation in the lin-42 gene, homolog to the per gene) exhibit a significantly longer circadian period of 25.2±0.4 h or 25.6±0.5 h, respectively. Our results represent a complete description of the locomotor activity rhythm in C. elegans, with a methodology that allowed us to uncover three of the key features of circadian systems: entrainment, free-running and temperature compensation. In addition, abnormal circadian periods in clock mutants suggest a common molecular machinery responsible for circadian rhythmicity. Our analysis of circadian rhythmicity in C. elegans opens the possibility for further screening for circadian mutations in this species.
A Validated Methodology for Genetic Identification of Tuna Species (Genus Thunnus):
Tuna species of the genus Thunnus, such as the bluefin tunas, are some of the most important and yet most endangered trade fish in the world. Identification of these species in traded forms, however, may be difficult depending on the presentation of the products, which may hamper conservation efforts on trade control. In this paper, we validated a genetic methodology that can fully distinguish between the eight Thunnus species from any kind of processed tissue. After testing several genetic markers, a complete discrimination of the eight tuna species was achieved using Forensically Informative Nucleotide Sequencing based primarily on the sequence variability of the hypervariable genetic marker mitochondrial DNA control region (mtDNA CR), followed, in some specific cases, by a second validation by a nuclear marker rDNA first internal transcribed spacer (ITS1). This methodology was able to distinguish all tuna species, including those belonging to the subgenus Neothunnus that are very closely related, and in consequence can not be differentiated with other genetic markers of lower variability. This methodology also took into consideration the presence of introgression that has been reported in past studies between T. thynnus, T. orientalis and T. alalunga. Finally, we applied the methodology to cross-check the species identity of 26 processed tuna samples. Using the combination of two genetic markers, one mitochondrial and another nuclear, allows a full discrimination between all eight tuna species. Unexpectedly, the genetic marker traditionally used for DNA barcoding, cytochrome oxidase 1, could not differentiate all species, thus its use as a genetic marker for tuna species identification is questioned.
- Log in to post comments