New and Exciting in PLoS this week

New this morning in PLoS ONE, PLoS Biology and PLoS Medicine. As always, you should rate the articles, post notes and comments and send trackbacks when you blog about the papers:

Mandatory Disclosure of Pharmaceutical Industry-Funded Events for Health Professionals:

We are in a period of unprecedented scrutiny of the relationships between the pharmaceutical industry and doctors [1]-[4]. Legislators are now considering how they might become involved in the regulation of these practices. This is a telling comment on the perceived failure of the medical profession to regulate itself and of self-regulation by industry. But reliable and comprehensive data on the nature and extent of industry sponsorship are rare. Several states in the US have mandatory disclosure laws for physician payments, but these data have proved difficult to access and analyse [5]. The US Congress is considering new mechanisms for revealing industry-professional interactions (the so-called "Sunshine" Acts) [6],[7]...

Somatosensory Cortices Are Required for the Acquisition of Morphine-Induced Conditioned Place Preference:

Sensory system information is thought to play an important role in drug addiction related responses. However, how somatic sensory information participates in the drug related behaviors is still unclear. Many studies demonstrated that drug addiction represents a pathological usurpation of neural mechanisms of learning and memory that normally relate to the pursuit of rewards. Thus, elucidate the role of somatic sensory in drug related learning and memory is of particular importance to understand the neurobiological mechanisms of drug addiction. In the present study, we investigated the role of somatosensory system in reward-related associative learning using the conditioned place preference model. Lesions were made in somatosensory cortices either before or after conditioning training. We found that lesion of somatosensory cortices before, rather than after morphine conditioning impaired the acquisition of place preference. These results demonstrate that somatosensory cortices are necessary for the acquisition but not retention of morphine induced place preference.

Evolutionary History of the HAP2/GCS1 Gene and Sexual Reproduction in Metazoans:

The HAP2/GCS1 gene first appeared in the common ancestor of plants, animals, and protists, and is required in the male gamete for fusion to the female gamete in the unicellular organisms Chlamydomonas and Plasmodium. We have identified a HAP2/GCS1 gene in the genome sequence of the sponge Amphimedon queenslandica. This finding provides a continuous evolutionary history of HAP2/GCS1 from unicellular organisms into the metazoan lineage. Divergent versions of the HAP2/GCS1 gene are also present in the genomes of some but not all arthropods. By examining the expression of the HAP2/GCS1 gene in the cnidarian Hydra, we have found the first evidence supporting the hypothesis that HAP2/GCS1 was used for male gamete fusion in the ancestor of extant metazoans and that it retains that function in modern cnidarians.

A Simple Rule for Proteins to Follow:

Proteins are the workhorses of cells, acting as enzymes, structural elements, and signal transducers. The tremendous variability in proteins' chemical and physical properties is achieved through the manner in which they are made--by the mixing and matching of a set of basic building blocks known as amino acids. Each amino acid consists of a carbon atom attached to an amine group, a carboxyl group, a hydrogen atom, and one of 22 structurally and chemically distinct side groups. When a cell builds a protein, it uses the instructions encoded in a corresponding gene to tell it which amino acids to use, and in what order. A new protein is assembled front-to-back, with each new amino acid added to the growing chain by hooking its amine group to the carboxyl group of the previous amino acid...

An Integrated Analysis of Molecular Acclimation to High Light in the Marine Diatom Phaeodactylum tricornutum:

Photosynthetic diatoms are exposed to rapid and unpredictable changes in irradiance and spectral quality, and must be able to acclimate their light harvesting systems to varying light conditions. Molecular mechanisms behind light acclimation in diatoms are largely unknown. We set out to investigate the mechanisms of high light acclimation in Phaeodactylum tricornutum using an integrated approach involving global transcriptional profiling, metabolite profiling and variable fluorescence technique. Algae cultures were acclimated to low light (LL), after which the cultures were transferred to high light (HL). Molecular, metabolic and physiological responses were studied at time points 0.5 h, 3 h, 6 h, 12 h, 24 h and 48 h after transfer to HL conditions. The integrated results indicate that the acclimation mechanisms in diatoms can be divided into an initial response phase (0-0.5 h), an intermediate acclimation phase (3-12 h) and a late acclimation phase (12-48 h). The initial phase is recognized by strong and rapid regulation of genes encoding proteins involved in photosynthesis, pigment metabolism and reactive oxygen species (ROS) scavenging systems. A significant increase in light protecting metabolites occur together with the induction of transcriptional processes involved in protection of cellular structures at this early phase. During the following phases, the metabolite profiling display a pronounced decrease in light harvesting pigments, whereas the variable fluorescence measurements show that the photosynthetic capacity increases strongly during the late acclimation phase. We show that P. tricornutum is capable of swift and efficient execution of photoprotective mechanisms, followed by changes in the composition of the photosynthetic machinery that enable the diatoms to utilize the excess energy available in HL. Central molecular players in light protection and acclimation to high irradiance have been identified.

More like this