Accurate measures of the severity of pandemic (H1N1) 2009 influenza (pH1N1) are needed to assess the likely impact of an anticipated resurgence in the autumn in the Northern Hemisphere. Severity has been difficult to measure because jurisdictions with large numbers of deaths and other severe outcomes have had too many cases to assess the total number with confidence. Also, detection of severe cases may be more likely, resulting in overestimation of the severity of an average case. We sought to estimate the probabilities that symptomatic infection would lead to hospitalization, ICU admission, and death by combining data from multiple sources. We used complementary data from two US cities: Milwaukee attempted to identify cases of medically attended infection whether or not they required hospitalization, while New York City focused on the identification of hospitalizations, intensive care admission or mechanical ventilation (hereafter, ICU), and deaths. New York data were used to estimate numerators for ICU and death, and two sources of data--medically attended cases in Milwaukee or self-reported influenza-like illness (ILI) in New York--were used to estimate ratios of symptomatic cases to hospitalizations. Combining these data with estimates of the fraction detected for each level of severity, we estimated the proportion of symptomatic patients who died (symptomatic case-fatality ratio, sCFR), required ICU (sCIR), and required hospitalization (sCHR), overall and by age category. Evidence, prior information, and associated uncertainty were analyzed in a Bayesian evidence synthesis framework. Using medically attended cases and estimates of the proportion of symptomatic cases medically attended, we estimated an sCFR of 0.048% (95% credible interval [CI] 0.026%-0.096%), sCIR of 0.239% (0.134%-0.458%), and sCHR of 1.44% (0.83%-2.64%). Using self-reported ILI, we obtained estimates approximately 7-9Ã lower. sCFR and sCIR appear to be highest in persons aged 18 y and older, and lowest in children aged 5-17 y. sCHR appears to be lowest in persons aged 5-17; our data were too sparse to allow us to determine the group in which it was the highest. These estimates suggest that an autumn-winter pandemic wave of pH1N1 with comparable severity per case could lead to a number of deaths in the range from considerably below that associated with seasonal influenza to slightly higher, but with the greatest impact in children aged 0-4 and adults 18-64. These estimates of impact depend on assumptions about total incidence of infection and would be larger if incidence of symptomatic infection were higher or shifted toward adults, if viral virulence increased, or if suboptimal treatment resulted from stress on the health care system; numbers would decrease if the total proportion of the population symptomatically infected were lower than assumed.
Intrauterine infection may play a role in preterm delivery due to spontaneous preterm labor (PTL) and preterm prolonged rupture of membranes (PPROM). Because bacteria previously associated with preterm delivery are often difficult to culture, a molecular biology approach was used to identify bacterial DNA in placenta and fetal membranes. We used broad-range 16S rDNA PCR and species-specific, real-time assays to amplify bacterial DNA from fetal membranes and placenta. 74 women were recruited to the following groups: PPROM <32 weeks (n = 26; 11 caesarean); PTL with intact membranes <32 weeks (n = 19; all vaginal birth); indicated preterm delivery <32 weeks (n = 8; all caesarean); term (n = 21; 11 caesarean). 50% (5/10) of term vaginal deliveries were positive for bacterial DNA. However, little spread was observed through tissues and species diversity was restricted. Minimal bacteria were detected in term elective section or indicated preterm deliveries. Bacterial prevalence was significantly increased in samples from PTL with intact membranes [89% (17/19) versus 50% (5/10) in term vaginal delivery p = 0.03] and PPROM (CS) [55% (6/11) versus 0% (0/11) in term elective CS, p = 0.01]. In addition, bacterial spread and diversity was greater in the preterm groups with 68% (13/19) PTL group having 3 or more positive samples and over 60% (12/19) showing two or more bacterial species (versus 20% (2/10) in term vaginal deliveries). Blood monocytes from women with PTL with intact membranes and PPROM who were 16S bacterial positive showed greater level of immune paresis (p = 0.03). A positive PCR result was associated with histological chorioamnionitis in preterm deliveries. Bacteria are found in both preterm and term fetal membranes. A greater spread and diversity of bacterial species were found in tissues of women who had very preterm births. It is unclear to what extent the greater bacterial prevalence observed in all vaginal delivery groups reflects bacterial contamination or colonization of membranes during labor. Bacteria positive preterm tissues are associated with histological chorioamnionitis and a pronounced maternal immune paresis.
Reappraising Sexual Coevolution and the Sex Roles:
The history of evolutionary biology illustrates how theory shapes what we see and don't see in nature. Over the past 30 years, theoretical reappraisals in two areas of evolutionary research--sexual coevolution and the sex roles--have challenged longstanding ideas and yielded rich harvests of startling observations. This process continues apace.
A Cost of Sexual Attractiveness to High-Fitness Females:
In many species, females are frequently subject to harassing courtship from males attempting to mate with them. These persistent male behaviors can result in females incurring substantial direct fitness costs. We set out to examine how these costs may influence adaptive potential in a species that also exhibits male mate choice, i.e., a preference by males for females exhibiting certain traits. We found that harmful courtship behaviors were directed predominantly towards females of greater reproductive potential (and away from females of lesser potential), resulting in a reduction in the variation of lifetime reproductive successes among females in the population. This change in distribution of realized fitnesses represents a previously unappreciated consequence of sexual conflict-adaptive male mate preference can slow the rate of accumulation of beneficial mutations and speed the rate of accumulation of harmful mutations, thereby creating a "sexual conflict adaptive load" within a species.
Molecular Mechanism for Human Sperm Chemotaxis Mediated by Progesterone:
Sperm chemotaxis is a chemical guiding mechanism that may orient spermatozoa to the egg surface. A picomolar concentration gradient of Progesterone (P), the main steroidal component secreted by the cumulus cells that surround the egg, attracts human spermatozoa. In order to elucidate the molecular mechanism of sperm chemotaxis mediated by P, we combine the application of different strategies: pharmacological inhibition of signaling molecules, measurements of the concentrations of second messengers and activation of the chemotactic signaling. Our data implicate a number of classic signal transduction pathways in the response and provide a model for the sequence of events, where the tmAC-cAMP-PKA pathway is activated first, followed by protein tyrosine phosphorylation (equatorial band and flagellum) and calcium mobilization (through IP3R and SOC channels), whereas the sGC-cGMP-PKG cascade, is activated later. These events lead to sperm orientation towards the source of the chemoattractant. The finding proposes a molecular mechanism which contributes to the understanding of the signal transduction pathway that takes place in a physiological process as chemotaxis.
- Log in to post comments