Genomics to complex traits

My post below outlining the possible future of genomics and intelligence made me recall a paper from last fall, Predicting Unobserved Phenotypes for Complex Traits from Whole-Genome SNP Data:

Results from recent genome-wide association studies indicate that for most complex traits, there are many loci that contribute to variation in observed phenotype and that the effect of a single variant (single nucleotide polymorphism, SNP) on a phenotype is small. Here, we propose a method that combines the effects of multiple SNPs to make a prediction of a phenotype that has not been observed. We apply the method to data on mice, using phenotypic and genomic data from some individuals to predict phenotypes in other, either related or unrelated, individuals. We find that correlations between predicted and actual phenotypes are in the range of 0.4 to 0.9. The method also shows that the SNPs used in the prediction appear in regions that are known to contain genes associated with the traits studied. The prediction of unobserved phenotypes from high-density SNP data and appropriate statistical methodology is feasible and can be applied in human medicine, forensics, or artificial breeding programs.

The number of QTLs for the traits here is rather small, on the order of 15. Here's some interesting numbers:

For the data set on mice (~2200 individuals and ~10,000 SNP), it took ~15 minutes with a single CPU (~2 GHz), which compares favourably to a number of other computing strategies on the same data set...Assuming that computing time increases linearly with the number of individuals and markers, the method would run within one week even if the data set was large (e.g. 10,000 individuals with 1,000,000 SNPs). More time may be required to adequately monitor convergence, however parallel computing strategies would be useful here...Therefore, the methods described in this study can scale up to much larger data sets.

There's obviously a big difference between 2,200 mice and 2,200 humans. And it looks like these traits had relatively big effect loci controlling the variation, with moderate to very high heritabilities (~0.50 to almost 1.0).

Tags
Categories

More like this

So, let's see what's new in PLoS Genetics, PLoS Computational Biology, PLoS Pathogens, PLoS ONE and PLoS Neglected Tropical Diseases this week. As always, you should rate the articles, post notes and comments and send trackbacks when you blog about the papers. Here are my own picks for the week -…
A few days ago I pointed to a paper which suggests the possible utility of looking at selection on standing genetic variation on quantitative traits to get a sense of the role of adaptation in the human genome. We humans like to think we're a complex species, so I see no a priori reason why our…
A recent PLoS Genetics paper triggered a sea change in the way genetic data is handled by research institutions like the NIH, the Broad Institute, and the Wellcome Trust. The paper, which came out last month, demonstrated that it's possible to identify a single individual's DNA in a pool of DNA…
Willer et al. (2008). Six new loci associated with body mass index highlight a neuronal influence on body weight regulation Nature Genetics DOI: 10.1038/ng.287 Thorleifsson et al. (2008). Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity…