Galaxy clusters prove dark matter's existence (Synopsis)

“You may hate gravity, but gravity doesn’t care.” –Clayton Christensen

If all we had were galactic rotation curves -- like those measured by Vera Rubin -- we would know that something was wrong with our picture of the Universe, but we wouldn’t know how. Two equally good explanations, that there was either a flaw in the law of gravity or there was the existence of some unseen mass, could account for what we saw. But observations of galaxy clusters point to dark matter in a dramatic fashion.

The Coma cluster of galaxies, whose galaxies move far too quickly to be accounted for by gravitation given the mass observed alone. Image credit: KuriousG of Wikimedia Commons, under a c.c.a.-s.a.-4.0 license. The Coma cluster of galaxies, whose galaxies move far too quickly to be accounted for by gravitation given the mass observed alone. Image credit: KuriousG of Wikimedia Commons, under a c.c.a.-s.a.-4.0 license.

Both dark matter and the modifications one can make to gravity to explain galactic rotation make specific predictions for other phenomena. The motions of individual galaxies within a cluster, the bending of background light by strong lensing, the distortion of galaxy shape from weak lensing and the separation of effective mass from normal matter are four independent ways clusters can discriminate. On all four counts, they point to dark matter, not modified gravity.

The overlay in the lower left hand corner represents the distortion of background images due to gravitational lensing expected from the dark matter "haloes" of the foreground galaxies, indicated by red ellipses. The blue polarization "sticks" indicate the distortion. Image credit: Mike Hudson, of shear and weak lensing in the Hubble Deep field. His research page is at http://mhvm.uwaterloo.ca/. The overlay in the lower left hand corner represents the distortion of background images due to gravitational lensing expected from the dark matter "haloes" of the foreground galaxies, indicated by red ellipses. The blue polarization "sticks" indicate the distortion. Image credit: Mike Hudson, of shear and weak lensing in the Hubble Deep field. His research page is at http://mhvm.uwaterloo.ca/.

Come get the full story in pictures, video and no more than 200 words on today’s Mostly Mute Monday!

More like this

"You may hate gravity, but gravity doesn't care." -Clayton Christensen What's the deal with gravity, dark matter, and this whole "lensing" business anyway? You've probably heard that energy -- most commonly mass -- bends light. And perhaps you've seen an image or two like this one to illustrate…
"Forget it. I didn't have that thing inside me where I wanted to smash against somebody and watch them break. I was too sensitive for that and disliked being that sensitive." -Josh Brolin How do you figure out what something is made of? You take it apart -- cracking it open if necessary -- and look…
"We find them smaller and fainter, in constantly increasing numbers, and we know that we are reaching into space, farther and farther, until, with the faintest nebulae that can be detected with the greatest telescopes, we arrive at the frontier of the known universe." -Edwin Hubble When you look…
Yesterday, the Space Shuttle Atlantis docked with the Hubble Space Telescope, and now the removal and replacement of WFPC2 has commenced. As you probably know, I'm going to miss that camera. It's been unveiling the secrets of the Universe for the last 16 years, and in a way that no other camera…

Sabine has a reply of sorts:
backreaction.blogspot.co.il/2017/01/the-bullet-cluster-as-evidence-against.html?m=1

How does our planet produce gravity,
do we have a molten core spinning at the center of the earth producing gravity?
Is that how earth produce gravity?